新闻中心

EEPW首页 > EDA/PCB > 设计应用 > DSP电磁兼容性问题的分析

DSP电磁兼容性问题的分析

作者:时间:2012-10-23来源:网络收藏

1 引言

本文引用地址:http://www.eepw.com.cn/article/189815.htm

自从20世纪80年代初期第一片数字信号处理器芯片()问世以来,就以数字器件特有的稳定性、可重复性、可大规模集成、特别是可编程性和易于实现自适应处理等特点,给数字信号处理的发展带来了巨大机遇,应用领域广阔。但由于是一个相当复杂、种类繁多并有许多分系统的数、模混合系统,所以来自外部的电磁辐射以及内部元器件之间、分系统之间和各传输通道间的窜扰对DSP及其数据信息所产生的干扰,己严重地威胁着其工作的稳定性、可靠性和安全性[1]。据统计,干扰引起的DSP事故占其总事故的90%左右。同时DSP又不可避免地向外辐射电磁波,对环境中的人体、设备产生干扰、妨碍或损伤。并且随着DSP运算速度的提高,能够实时处理的信号带宽也大大增加,它的研究重点也转到了高速、实时应用方面。但正是这样,它的问题也就越来越突出了,本文在DSP的问题方面进行了一些探讨。

2 DSP硬件方面的

电磁兼容性(EMC)包含系统的发射和敏感度两方面的问题。假若干扰不能完全消除,也要使干扰减少到最小。如果一个DSP系统符合下面三个条件,则该系统是电磁兼容的。(1) 对其它系统不产生干扰;(2) 对其它系统的发射不敏感;(3) 对系统本身不产生干扰。

2.1 DSP中的干扰主要来源

电磁干扰是通过导体或通过辐射产生的,很多电磁发射源,如光照、继电器、DC 电机和日光灯都可引起干扰。AC电源线、互连电缆、金属电缆和子系统的内部电路也都可能产生辐射或接收到不希望的信号。在高速数字电路中,时钟电路通常是宽带噪声的最大产生源。在快速DSP系统中,这些电路可产生高达300MHz 的谐波失真信号,在系统中应该把它们除掉。在数字电路中,最容易受影响的是复位线、中断线和控制线。

2.2 DSP中的传导性干扰

一种最明显能引起电路噪声的传播路径是经过导体。一条穿过噪声环境的导线可捡拾噪声,并把噪声送到另外电路而引起干扰。设计人员必须避免导线捡拾噪声,如噪声通过电源线进入电路后,若电源本身或连接到电源的其它电路是干扰源,则在电源线进入电路之前必须对其去耦。

2.3 DSP中的共阻抗耦合问题

当来自两个不同电路的电流流经一个公共阻抗时就会产生共阻抗耦合。阻抗上的压降由两个电路决定。来自两个电路的地电流流经共地阻抗,电路 1的地电位被地电流2调制,噪声信号或DC补偿经共地阻抗从电路2耦合到电路1。

2.4 DSP中的辐射耦合问题

经辐射产生的耦合通称串扰。串扰是由电流流经导体时产生的电磁场引起的,电磁场会在邻近的导体中感应出瞬态电流。

2.5 DSP中的辐射现象

辐射有两种基本类型:差分(DM)和共模(CM)两种模式。共模辐射或单极天线辐射是由无意的压降引起的,它使电路中所有的地连接抬高到系统地电位之上。就电场大小而言,CM辐射是比 DM辐射更为严重的问题。为使CM辐射最小,必须用切合实际的设计使共模电流降到零。

2.6 影响EMC的因数

(1)电压:电源电压越高,意味着电压振幅越大而发射就更多,而低电源电压影响敏感度。

(2)频率:高频信号与周期性信号会产生更多的辐射。在高频数字系统中,当器件处于开关状态时将产生电流尖峰信号;在模拟系统中,当负载电流变化时也将产生电流尖峰信号。

(3)接地:在电路设计中,没有比采用可靠和完美的地线连接方式更重要的事情了,在所有EMC问题中,大部分问题是由不适当的接地引起的。有单点、多点和混合三种信号接地方法。在频率低于1MHz时可采用单点接地方法;在高频应用中,最好采用多点接地;混合接地是低频用单点接地和高频用多点接地方法的结合。但高频数字电路和低电平模拟电路的地回路绝对不能混合。

(4)PCB设计:适当的印刷电路板(PCB)布线对防止电磁干扰至关重要。

(5)电源去耦:当器件开关时,在电源线上会产生瞬态电流,必须衰减和滤掉这些瞬态电流,来自高di /dt源的瞬态电流导致地和线迹“发射”电压。高d i/dt产生大范围高频电流,激励部件和缆线辐射,流经导线的电流变化和电感会导致压降,减小电感或电流随时间的变化可使该压降最小。

2.7 DSP的硬件降噪技术

2.7.1 板结构、线路安排方面的降噪技术

(1)采用地和电源平板;(2)平板面积要大,以便为电源去耦提供低阻抗;(3)使表面导体最少;(4)采用窄线条(4到8密耳)以增加高频阻尼和降低电容耦合;(5)分开数字、模拟、接收器、发送器地/电源线;(6)根据频率和类型分隔PCB上的电路;(7)不要切痕PCB,切痕附近的线迹可能导致不希望的环路;(8)采用叠层结构是对大多数信号整体性问题和EMC问题的最好防范措施,它能够做到对阻抗的有效控制,其内部的走线可形成易懂和可预测的传输线结构。且要密封电源和地板层之间的线迹;(9)保持相邻激励线迹之间的间距大于线迹的宽度以使串扰最小;(10)时钟信号环路面积应尽量小;(11)高速线路和时钟信号线要短且要直接连接;(12)敏感的线迹不要与传输高电流快速开关转换信号的线迹并行;(13)不要有浮空数字输入,以防止不必要的开关转换和噪声产生;(14)避免在晶振和其它固有噪声电路下面有供电线迹;(15)相应的电源、地、信号和回路线迹要平行布景,以消除噪声;(16)使时钟线、总线和片使能端与输入/输出线和连接器分隔开来;(17)使路线时钟信号与I/O信号处于正交位置;(18)为使串扰最小,线迹用直角交叉和散置地线;(19)保护关键线迹(用4密耳到8密耳线迹以使电感最小,路线紧靠地板层,板层之间夹层结构,保护夹层的每一边都有地)。

2.7.2 采用滤波技术降噪方法

(1)对电源线和所有进入PCB的信号进行滤波,在IC的每一个点引脚处用高频低电感陶瓷电容(14MHz用0.1 mF,超过15MHz用0.01mF)进行去耦;(2)旁路模拟电路的所有电源供电和基准电压引脚;(3)旁路快速开关器件;(4)在器件引线处对电源/ 地去耦;(5)用多级滤波来衰减多频段电源噪声;(6)把晶振安装嵌入到板上并且接地;(7)在适当的地方加屏蔽;(8)安排邻近地线紧靠信号线,以便更有效地阻止出现新的电场;(9)把去耦线驱动器和接收器适当地放置在紧靠实际的I/O接口处,这可降低PCB与其它电路的耦合,并使辐射和敏感度降低;(10)对有干扰的引线进行屏蔽和绞在一起,以消除PCB上的相互耦合;(11)在感性负载上加箝位二极管。

3 DSP软件设计时应采取的措施

软件方面的干扰主要表现在以下几个方面:(1)不正确的算法产生错误的结果,最主要的原因是由于计算机处理器中的程序指数运算是近似计算,产生的结果有时有较大的误差,容易产生误动作;(2)由于计算机的精度不高,而加减法运算时要对阶,大数“吃掉”了小数,产生了误差积累,导致下溢的出现,也是噪声的来源之一;(3)由于硬件方面的干扰引起的计算机出现的诸如:程序计数器PC值变化、数据采集误差增大、控制状态失灵、RAM数据受干扰发生变化以及系统出现“死锁”等现象。

3.1 采用拦截失控程序的方法

(1)在程序设计时应多采用单字节指令,并在关键处插入一些空操作指令,或将有效单字节指令重复几次,这样可保护其后的指令不被拆散,使程序运行走上正轨;(2)加入软件陷阱:当PC值失控使程序失控后,CPU进入非程序区,这时可用一条引导指令,强迫程序进入初始入口状态,进入程序区,可每隔一段设置一个陷阱;(3)软件复位:当程序“走飞”时,运行监视系统,使系统自动复位而重新初始化。

3.2 设立标志判断

定义某单元为标志,在模块主程序中把该单元的值设为某个特征值,然后在主程序的最后判断该单元的值是否不变,若不同了则说明有误,程序就转入错误处理子程序。

上一页 1 2 下一页

关键词: DSP 电磁兼容性 分析

评论


相关推荐

技术专区

关闭