新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 安森美80 PLUS银级能效255 W ATX电源参考设计概览

安森美80 PLUS银级能效255 W ATX电源参考设计概览

作者:时间:2009-07-27来源:网络收藏

前言
在人们日常生活工作中计算机消耗的电能非常可观,故业界十分关注计算机领域的节能降耗。关注计算机的各标准组织及规范也相继登场,如美国“能源之星” 、80 、计算产业拯救气候行动(CSCI)等。这些规范为计算机人员带来越来越高的挑战,使他们面对很重的技术及市场压力,特别是需要高性价比地将在真实世界条件下具有极高推向市场。

本文引用地址:http://www.eepw.com.cn/article/181299.htm

幸好,如这样的领先供应商不断推出更高能效的。早在2005年,就推出了业界首款获得80 认证的ATX电源公开,这设计中提供的文档包括功能框图和全部示意图、物料单(BOM)、电路板布线图、设计描述、性能测试结果以及源自第三方的性能验证。随着,于2007年推出第二代的 80 认证ATX参考设计,采用新的元器件及设计技术,提供更高的能效。而在2009年,安森美半导体更推出第三代的80 PLUS银级能效(完整负载范围及交流电压条件下能效达85%)的ATX公开参考设计(见图1),这参考设计在真实世界而非仅是实验室工作条件下,提供更高的能效,并且它的配置可立即投入生产,让计算机电源制造商能以高性价比向市场推出在真实世界条件下能效极高的绿色ATX电源。
图1:安森美半导体85 PLUS银级能效ATX电源参考设计功能框图。

规范及要求
这参考设计遵从ATX12 V 2.2版电源指南及规范,超越了80 PLUS银级、“能源之星”、CSCI第三阶段规范中对多输出台式计算机电源的能效目标(见表1)。

这参考设计的其它关键参数的目标规范包括:
输入电压:通用交流主电源:90 Vac至265 Vac,频率47至63 Hz
安全特性:根据ATX12V 2.2版电源指引,这参考设计包含过压保护(OVP)、欠压保护(UVP)和过流保护(OCP)等保护特性


表1:台式计算机多输出电源能效目标

电源架构
总的来说,支持安森美半导体这第三代ATX平台的半导体元器件包括NCP1654 PFC控制器、NCP1396 HB LLC控制器、NCP4302同步整流控制器、NCP1027待机控制器、NCP1587带同步整流的DC-DC控制器,以及由NCP1587驱动的NTD4890单N沟道功率MOSFET。

1)初级端:PFC段
按电流工作特性来分,PFC拓扑结构有多种,如非连续导电模式(DCM)、临界导电模式(CrM)和连续导电模式(CCM)。在本参考设计所涉及的功率等级,首选CCM拓扑结构,而NCP1654用于实现符合IEC61000-3-2标准、固定频率、峰值电流模式或平均电流模式的PFC升压转换器,而外围元件极少。这PFC段为第二段的谐振半桥双电感加单电容(HB LLC)转换器NCP1396提供恒定的385 V输出电压。

2)初级端:HB LLC转换器
HB LLC转换器段的核心是NCP1396谐振模式控制器。这控制器采用专有的高压技术,包含一颗“充当启动电路(bootstrapped)”的MOSFET驱动器用于半桥应用,接受达600 V的大电压。 这控制器提供多种保护特性,如立即关闭或基于定时器时间的关闭、输入欠压保护、光耦合器断路检测等,既提供了转换器设计的安全性,也不会增加电路的复杂度。

3)次级端:同步整流
谐振HB LLC转换器产生的12 V输出采用专有的同步整流机制来整流,使用NCP4302和2颗外部单N沟道MOSFET。

4)次级端:DC-DC转换段
直流-直流(DC-DC)转换段采用两颗相同的 DC-DC控制器来将12 V电压向下转换至+5 V、3.3 V及-12 V。所用的DC-DC控制器是低成本的脉宽调制(PWM)控制器NCP1587。这器件是采用极小型表面贴装8引脚封装的低压同步降压控制器。NCP1587能够产生低至0.8 V的输出电压,提供1 A门极驱动器设计及内部设定的275 kHz振荡器。这门极驱动器其它提高能效的特性包括自适应非交叠电路。NCP1587还集成了外部补偿误差变压器及电容可编程软启动功能。保护特性包括可编程短路保护和欠压锁定。每个控制器都采用同步整流机制,各驱动两颗NTD4809(30 V、58 A、单N沟道功率MOSFET)元件。-+5 V输出轨使用小的分立转换器产生12 V输出。

5)次级端:监测及监控段
在次级端,四路直流输出+5 V、+3.3 V、+12 VA和+12 VB均采用专用监控控制器来监控,这控制器还提供过流保护、过压保护、欠压保护等功能,并产生功率良好(PG)逻辑信号。

6)待机电源
集成反激转换器NCP1027提供12 W待机能效率,为另一个隔离的5 V电压轨供电。这器件集成了固定频率电流模式控制器和700 V高压MOSFET。在轻载条件下,这IC将工作在跳周期模式,因而降低开关损耗,并在整个负载范围内提供高能效。

模拟真实世界条件下的能效测试结果
我们在20%、50%和100%这三种负载条件下,100 Vac、115 Vac、230 Vac和240 Vac四种不同交流线路电压下测试了这参考设计的能效。实际上,相关认证中并未规定线缆长度,导致某些制造商宣称的能效水平是直接在电源输出端(或是采用不切实际的线缆长度)测得的。现实中,可工作的台式PC的外形因数及设计,意指电源和电能提供点之间的线缆长度通常测得为约16英寸(41厘米),因此,是总损耗的构成因素。而安森美半导体的这些测试结果是在41厘米长线缆的末端测得的,与真实世界工作条件相仿。

1)总能效
这参考设计实现所有负载条件下高于85%的能效,符合80 PLUS银级能效要求,见表2。

表2:不同负载条件下的总能效测试结果。

2)功率因数
50%及100%负载条件下的功率因数均高于0.9,符合80 PLUS银级能效要求,见表3。

上一页 1 2 下一页

评论


相关推荐

技术专区

关闭