基于微网理念的光伏变流器系统设计
并网发电是光伏发电的有效利用方式之一。目前并网发电系统当外部主电网故障或检修时,需要防止孤岛效应产生,常用措施是切除并网系统,停止其发电,但会造成一定的浪费。随着生活水平的提高,人们对供电稳定性也提出了更高的要求。
微电网是一种由负荷和微型电源组成的系统,其内部电源主要由电力电子器件负责能量转换,并提供必要控制。微电网相对于外部大电网表现为单一的受控单元,并可同时满足用户对电能质量和供电安全等方面要求,并且微电网能与外部电网脱离,独立运行。
本文结合微电网理念,设计一个光伏变流器,构建一个小型系统。当外部电网正常时,变流器工作于并网模式;当外部电网故障时,该系统和外部电网脱离,变流器工作于离网模式,并结合蓄电池继续对重要负载供电。
1 系统原理
1.1 系统结构
系统结构框图如图1所示。该系统结构主要由太阳能光伏池板阵列、蓄电池组及其管理系统、光伏变流器、电能计量单元以及重要负载5部分组成。
光伏池板经过串并联后形成25 kWp,开路电压为500V的太阳能电池阵列。蓄电池选用50kW·h锂电池,并且带有电池管理系统。逆变器是整个系统核心和主控单元,设计额定输出功率为25kW。电能计量单元能够实时检测电网和系统之间的功率流向以及接口处电压相位和频率,为并网离网切换提供信息依据。
光伏变流器主电路拓扑主要分2部分,前级为2个并联在直流母线上的双向DC-DC电路,后级为三相全桥DC-AC逆变电路。两级之间通过大电容解耦。双向DC-DC电路作用主要有维持中间电压稳定,另外光伏池板侧的DC-DC电路同时实现光伏池板的最大功率跟踪功能,蓄电池侧的DC-DC电路同时能实现蓄电池的充电功能。
变流器三相逆变输出通过LC滤波,经过三相工频隔离变压器并网。重要负载接在变压器输出侧,通过一个交流继电器和电网相连。变流器系统通过隔离RS485方式与电能计量单元通信,获取网侧实时功率信息;通过隔离CAN总线方式与锂电池管理系统通信,获取蓄电池状态信息。
1.2 系统工作模式
系统工作模式有并网和离网2种模式。当外部电网正常时,变流器工作于并网模式。光伏池板侧DC-DC电路升压工作,维持中间直流母线电压710 V,同时采用扰动观察法,对光伏池板进行最大功率点跟踪,使池板工作发挥最大效率。蓄电池侧DC-DC电路,结合蓄电池管理系统提供数据,单相降压工作,对蓄电池进行充电,直到达到其设定的上限电压Uh。DC-AC部分工作于电压型逆变器模式,实时跟踪外部电压幅值和相位,逆变输出电能供给重要负载和电网。
当外部电网异常时,变流器工作于离网模式。光伏池板侧DC-DC电路依旧升压工作,但此时蓄电池侧DC-DC电路根据重要负载大小,选择给蓄电池充电或是使蓄电池放电工作,维持中间母线电压稳定。DC-AC部分工作于离网逆变模式,维持输出相电压220 V/50 Hz。锂电池侧DC-DC电路控制充分结合锂电池管理系统,其控制流程如图2所示。
评论