新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 运算放大器的噪声

运算放大器的噪声

作者:时间:2011-04-06来源:网络收藏

问:有关我应该知道些什么?

本文引用地址:http://www.eepw.com.cn/article/179279.htm

答:首先,必须注意到及其电路中元器件本身产生的与外界干扰或无用信号并且在的某一端产生的电压或电流或其相关电路产生的噪声之间的区别。
干扰可以表现为尖峰、阶跃、正弦波或随机噪声而且干扰源到处都存在:机械、靠近电源线、射频发送器与接收器、计算机及同一设备的内部电路(例如,数字电路或开关电源)。认识干扰,防止干扰在你的电路附近出现,知道它是如何进来的并且如何消除它或者找到对付干扰的方法是一个很大的题目。

如果所有的干扰都被消除,那么还存在与及其阻性电路有关的随机噪声。它构成运算的控制分辨能力的终极限制。我们下面的讨论就从这个题目开始。

问:好,那就请你讲一下有关运算放大器的随机噪声。它是怎么产生的?

答:在运算放大器的输出端出现的噪声用电压噪声来度量。但是电压噪声源和电流噪声源都能产生噪声。运算放大器所有内部噪声源通常都折合到输入端,即看作与理想的无噪声放大器的两个输入端相串联或并联不相关或独立的随机噪声发生器。我们认为运算放大器噪声有三个基本来源:
·一个噪声电压发生器(类似失调电压,通常表现为同相输入端串联)。
·两个噪声电流发生器(类似偏置电流,通过两个差分输入端排出电流)。
·电阻噪声发生器(如果运算放大器电路中存在任何电阻,它们也会产生噪声。可把这种噪声看作来自电流源或电压源,不论哪种形式在给定电路中都很常见)。

运算放大器的电压噪声可低至3nV/Hz。电压噪声是通常比较强调的一项技术指标,但是在阻抗很高的情况下电流噪声常常是系统噪声性能的限制因素。这种情况类似于失调,失调电压常常要对输出失调负责,但是偏置电流却有真正的责任。双极型运算放大器的电压噪声比传统的FET运算放大器低,虽然有这个优点,但实际上电流噪声仍然比较大。现在的FET运算放大器在保持低电流噪声的同时,又可达到双极型运算放大器的电压噪声水平。


问:电压噪声达到3nV/Hz的单位是怎么来的?它的含义如何?
答:让我们讨论一下随机噪声。在实际应用中(即在设计者关心的带宽内)许多噪声源都属于白噪声和高斯噪声。白噪声是指在给定带宽内噪声功率与频率无关的噪声。高斯噪声是指噪声指定幅度X出现的概率服从高斯分布的噪声。高斯噪声具有这样的特性:当来自两个以上的噪声有效值(rms)进行合成时,而且提供的这些噪声源都是不相关的(即一种噪声信号不能转换为另一种噪声信号),这样合成的总噪声不是这些噪声的算术和而是它们平方和的平方根(rss)(这意味着噪声功率线性叠加,即平方和相加)。例如有三个噪声源V1,V2和V3,它的rms和为:
V0=V21+V22+V23

由于噪声信号的不同频率分量是不相关的,从而rss合成结果是:如果单位带宽(brickwallbandwidth)为Δf的白噪声为V,那么带宽为2Δf的噪声为V2+V2=2V。更为普遍的情况,如果我们用系数K乘以单位带宽,那么KΔf带宽的噪声为KV。因此在任何频率范围内将Δf=1Hz带宽的噪声有效值所定义的函数称作(电压或电流)噪声谱密度函数,单位为nV/Hz或pA/Hz。对于白噪声,噪声谱密度是一个常数,用带宽的平方根乘以谱密度便可得到总有效值噪声。
有关rss和的一个有用结果是:如果有两个噪声源都对系统噪声有贡献,而且一个比另一个大3或4倍,那么其中较小的那个常常被忽略,因为
42=16=4,但是42+12=17=412
两者之差小3%,或026dB。
32=9=3,但是32+12=10=316
两者之差小6%,或05dB。
因此较大的噪声源对噪声起主要作用。

问:那么电流噪声又如何呢?
答:简单(即不带偏置电流补偿)的双极型和JFET运算放大器的电流噪声通常在偏置电流的散粒噪声(有时称为肖特基噪声)的1或2dB范围以内。在产品说明中一般不给出。散粒噪声是由于电荷载流子随机分布以电流形式通过PN结引起的电流噪声。如果流过的电流为I,那么在带宽B内的散粒噪声In可用下述公式来计算:
In=2IqB
其中q为电子电荷(16×10-19C)。应当注意2Iq为噪声谱密度,即这种噪声为白噪声。
从而告诉我们,简单双极型运算放大器的电流噪声谱密度在Ib=200nA时大约为250fA/Hz,而且随温度变化不大,而JFET输入运算放大器的电流噪声谱密度比较低(在Ib=50pA时为4fA/Hz),并且温度每增加20°C其噪声谱密度加倍,因为温度每增加10°C其偏置电流加倍。
带偏置电流补偿的运算放大器的实际电流噪声比根据其输入电流预测的电流噪声要大得多。理由是其净偏置电流是输入偏置电流与补偿电流源之差,而其噪声电流是从这两个噪声电流的rss和导出的。
具有平衡输入的传统的电压反馈运算放大器,其同相输入与反相输入端的电流噪声总相等(但不相关)。而电流反馈或跨导运算放大器在两个输入端具有不同的输入结构,所以其电流噪声也不同。有关这两种运算放大器两个输入端电流噪声的详细情况请参考其产品说明。
运算放大器的噪声服从高斯分布,在很宽的频带范围内具有恒定的谱密度,或“白”噪声,但当频率降低时,谱密度以3dB/倍频程开始上升。这种低频噪声特性称作“1/f噪声”,因为这种噪声功率谱密度与频率成反比。它在对数坐标上斜率为-1(噪声电压或电流1/f频谱密度斜率为-1/2)。-3dB/倍频程谱密度直线延长线与中频带恒定谱密度直线的交点所对应的频率称作1/f转折频率(cornerfrequency),它是放大器的品质因数。早期的单片集成运算放大器的1/f在500Hz以上转折,但当今的运算放器在20~50Hz转折是常见的,最好的放大器(例如ADOP27和ADOP37)转折频率低到27Hz。1/f噪声对于等比率的频率间隔(如每倍频程或每十倍频程)具有相等的增量。
问:为什么你们不公布噪声系数?
答:放大器的噪声系数(NF)用来表示放大器噪声与源电阻热噪声之比,单位为dB,可用下式表示:
NF=20logVn(amp)+Vn(source)Vn(source)
其中Vn(amp)表示放大器噪声,Vn(source)表示源电阻热噪声。
NF对射频放大器来说是一项很有用的技术指标,一般总是使用相同的源电阻(50或75Ω)来驱动射频放大器,但当这项指标用于运算放大器时容易引起误解,因为运算放大器在许多不同应用中其源阻抗(不一定是阻性的)变化范围很宽。

问:源阻抗对噪声有何影响?

答:当温度在绝对零度以上时所有电阻都是噪声源,其噪声随电阻、温度和带宽的增加而增加(随后我们将讨论基本电阻噪声或热噪声)。电抗不产生噪声,但噪声电流通过电抗将产生噪声电压。

如果我们从某一个源电阻驱动一个运算放大器,那么等效输入噪声将是该运算放大器的噪声电压,源电阻产生的噪声电压和放大器的噪声电流In流过源电阻产生的噪声电压的rss和。如果源电阻很低,那么源电阻产生的噪声电压和放大器的噪声电流通过源电阻产生的噪声电压对总噪声的贡献不明显。在这种情况下放大器输入端的总噪声只有运算放大器的电压噪声起主要作用。

如果源电阻很高,那么源电阻产生的热噪声对运算放大器的电压噪声和由电流噪声引起的电压噪声都起主要作用。但值得注意的是,由于热噪声只是随电阻的平方根增加,而由电流噪声引起的噪声电压直接与输入阻抗成正比,所以放大器的电流噪声对于输入阻抗足够高的情况下总是起主要作用。当放大器的电压噪声和电流噪声都足够高时,则不存在输入电阻为何值时热噪声起主要作用的问题。

按此在新窗口浏览图片

图81热噪声与源电阻的关系


上一页 1 2 3 下一页

关键词: 噪声 放大器 运算

评论


相关推荐

技术专区

关闭