新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 用PIC单片机设计A/D、D/A转换器

用PIC单片机设计A/D、D/A转换器

作者:时间:2011-12-06来源:网络收藏

2.2 编程4bit PWM实现8bit的转换

设8bit 待转换的二进制数存放于16C62×;的数据存储器的某一单元

将其分为两个4bit的二进制码:VR=VR3VR2VR1 VR0,VP=VP3VP2VP1V P0。VR控制基准电压源实现4bit 转换,VP用于对基准源的输出电压进行4bit PWM(脉宽调制)。PWM的高电平为VR对应的VREF电压值, PWM的低电平为VR-1对应的VREF电压值。如此,以4bit D/A转换基准电压源的两个相邻二进制码对应的两个VREF值,分别作为4bit PWM的高电平和低电平,这就组成一个8bit的D/A。图2、图3为常规PWM与D/A+PWM的区别,常规PWM 的高电平为VDD(如5V),低电平为0V,其原理众所皆知,此处不再详细叙述。本文所述的D/A+PWM其PWM的工作原理与常规PWM的工作原理一样,只是PWM脉冲的高电平与低电平分别由VR 与VR-1的值决定。编程时,首先将待D/A转换的8bit二进制数分成高4位与低4位,低4位存放于16C62×的某一数据存储器R0中,高4位作4次右移(移到字节低端)存放于16C62×的另一个数据存贮器R1中。利用PIC16C64×的一个定时器中断编写PWM程序,PWM的占空比由R0中的值(即VP值)决定。将定时器中断设置为最高优先级别,以保证PWM的占空比精度。此段程序的实质是:在由二进制码VP决定占空比的PWM程序中对VRCON控制寄存器进行赋值操作。PWM脉冲的高电平由向VRCON控制寄存器低4位装入VR产生,PWM脉冲的低电平由向VRCON控制寄存器低4位装入VR-1产生。程序中需判断:当VRH=0时,VR-1对应的REF由前所述的REFL低段值实现。

OUT即为8bit 的D/A输出。PWM的滤波电路由0、2、1组成,其时间常数根据PWM的周期选定,与具体应用中对D/A转换要求的速度和编程有关。由于PIC16C62×的高速RISC精简指令,D/A转换速度可达到400Kbit /s以上。DD的温漂要求尽量小。OUT可根据需要进行放大或电平变换。

3

把前述D/A转换输出的OUT模拟信号接到PIC16C62×内部的一个比较器的同相端,待转换模拟信号接到比较器的反相端,这就构成一个典型的逐次逼近型。其原理在许多教科书里讲得非常清楚,本文不再详述。

由于PIC16C62×具有比较器中断功能,充分利用比较器中断可提高编程效率及提高转换速度。定义一个PIC16C62×的数据存储器单元作为A/D转换结果数据寄存器,启动A/D转换之前在此寄存器内预置一个经验数据,采用前述D/A转换的方法将此数据转换成OUT电平,OUT电平与待转换模拟信号电平进行比较。比较器的同相端电平高于反相端电平时,比较器输出逻辑“1”,并产生一次中断。比较器的同相端电平低于反相端电平时,比较器输出逻辑“0”,也产生一次中断。比较器输出逻辑状态“1”或“0”可从其特殊功能寄存器的相关位查询获取。在比较器中断程序中,根据查询结果逐次修改“A/D转换结果数据寄存器”中的数据,使OUT电平逐次逼近并最终收敛于待转换模拟信号电平,收敛时数据寄存器中的值即为A/D转换结果。收敛算法的优劣是提高A/D转换速度的关键,这与具体应用场合及外围电路参数相关。不过,大多数家电产品应用中被转换的模拟信号为低速缓慢变化信号,对A/D转换速度的要求并不高。因此,对收敛算法的要求不高,通常采用从MSB至LSB逐次进行比较的算法。另外,待转换模拟信号须经过电平变换,使其变化范围与OUT电平的变化范围相一致。

4 小结

PIC16C62×;系列内部有两个独立的模拟比较器,并且其数字I/O口具备直接驱动发光二极管与led数码管的能力。采用本文所述的A/D、D/A转换器原理的应用电路只占用其内部一个模拟比较器、一个基准源、4个引脚的资源,外围电路也很简单,应用系统容易做到体积小、可靠性高、性价比好 。缺点是A/D、D/A的转换速度较慢并占用的大量时间资源,适合于低速变化的信号应用。

模数转换器相关文章:模数转换器工作原理



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭