新闻中心

EEPW首页 > 消费电子 > 设计应用 > 在消费电子设备中发挥D类放大器优势的系统设计方法

在消费电子设备中发挥D类放大器优势的系统设计方法

作者:时间:2008-04-10来源:网络收藏

在MP3播放器、移动电话、游戏控制台、LCD TV和家庭影院等各种电子音频应用中,开关或D类的重要性迅速提高。D类最突出的优点是效率非常高,在实际应用中可高达85~90%,而线性AB类放大器在典型的收听水平下的效率通常只能达到25%左右。

在手持应用中,D类放大器的低功率耗散特性使得工程师可以在保证音频性能的同时,延长电池的充电间隔时间。对所有的个人通讯及音频设备来说,电池寿命都是一个关键的性能指标,而对音视频(AV)产品和游戏控制台等由电源供电的设备来说,D类放大器的高功率效率使得设备可以工作在较低的电源电压下,并减少发热。因此,工程师可选用较小的散热器以缩小产品尺寸,并降低材料成本和装配成本。事实上,经过仔细的电源可以在无需加散热器的情况下,提供每通道高达数瓦的输出功率。

D类放大器解决方案

在D类放大器中,音频信号与开关频率远高于音频范围的锯齿波进行比较(图1),产生一个与锯齿波等周期的脉宽调制(PWM)方波。这个脉宽信号代表音频信号的一个样本。然后,PWM方波及其反相信号驱动MOSFET输出级(通常为H桥),产生经过放大的方波采样信号。最后,该采样信号由低通滤波器滤波之后,重新生成经过放大的音频信号。

由于MOSFET门电容的存在,提高开关频率将在输出级引起更大的损耗,但由于更高的开关频率可以提高PWM调制器的有效分辨率(与Σ-Δ调制器的过采样过程非常相似),提高开关频率也能带来了一些好处,例如,可降低对输出滤波的要求,提高音频信噪比(SNR)。利用噪声整形技术可以进一步提高性能。以Wolfson公司的WM8608 D类放大器IC为例,当脉冲频率为384kHz(48kHz采样速率的8倍)时,信噪比可达100dB以上(A加权)。

保持内部时钟“干净”至关重要,因为任何抖动都会引起PWM信号边缘的定时发生随机变化,这会在模拟输出中产生噪声。因此,这个时钟是通过片上低噪声锁相环(PLL),由主时钟生成的。只要主时钟足够“干净”,这就可以消除大部分抖动。因此,在D类放大器IC的内部直接生成主时钟也是可行的。这种方式将通过保持振荡器和片上PLL之间的连接,来防止来自开关输出级或其它地方的干扰影响时钟信号的质量。此外,它不需要外部PLL滤波元件。为了使噪声不影响为PLL供电的3.3V模拟电源,可在紧靠电源引脚的地方放置一个去耦滤波器。

图1:D类放大器具有两个输出级:第一级为将PCM输入转变成调制方波的比较器;第二级为输出端带有低通滤波器的半桥转换器。
图1:D类放大器具有两个输出级:第一级为将PCM输入转变成调制方波的比较器;第二级为输出端带有低通滤波器的半桥转换器。

功率级设计

功率桥(图2)的设计依赖于放大器的期望输出功率。例如,目前市面上已经有带耳机驱动器的D类放大器IC,以及带扬声器驱动器的D类放大器IC,输出级设计是这些配置的主要差别之一。为驱动扬声器而设计的放大器可以提供从低于1瓦到高达数瓦的输出功率,且无需散热器。利用这些IC,可以为从便携式媒体播放器(PMP)到游戏控制台和一些LCD TV等许多电子应用提供单芯片解决方案。对于上述大部分应用(特别是手持产品)来说,单芯片方案是不可缺的。

但为获得非常高的输出功率,可以把D类调制器IC与采用快速开关型功率MOSFET的外部输出级相结合。它们可以采用分立元件,也可以集成在一个单独的IC中。调制器必须提供一个相配的前置驱动器,而输出级MOSFET必须针对数字音频操作而经过优化设计。功率MOSFET的导通电阻Ron会发热并降低功率效率,因此该电阻应尽可能小。为尽量减少用来驱动MOSFET的电平转换器中的功率消耗和发热,还应减小MOSFET门电容。出于同样的考虑,减小电平转换器的输入电容也很重要。门电容高也将导致RC延迟,最终降低晶体管的开关速度。

一个不太明显的潜在问题是晶体管之间开关特性的匹配。例如,如果一个NMOS器件的导通速度比其对应PMOS器件的关断速度快得多,那么两个器件的导通时间可能会在信号边缘出现一小段重叠。当两个器件同时导通时,电源本质上是短路的,导致功率效率降低,热耗散增加,并且有可能使电源电压骤降而造成音频信号失真。为保持信号完整性,输出级(功率MOSFET和电平转换器)的开关延迟应该小于最小PWM脉冲宽度。

有一些厂商提供可直接连接到D类调制器IC输出端的集成式输出级。这些通常每个通道包含4个匹配的功率MOSFET的输出级也能完成PWM信号的电平变换:将放大器输出端的3.3V转换成能够控制功率器件的更高电压。

图2:带有半桥式输出级的D类放大器,但全H桥配置也很常见。
图2:带有半桥式输出级的D类放大器,但全H桥配置也很常见。



评论


相关推荐

技术专区

关闭