新闻中心

EEPW首页 > 消费电子 > 设计应用 > 对便携式音频设备的音频放大器咔嗒声进行定量分析

对便携式音频设备的音频放大器咔嗒声进行定量分析

作者:时间:2008-04-10来源:网络收藏

咔嗒声是指驱动变换器的在打开或关闭过程中,瞬变信号在耳机或扬声器中产生的杂音。直到目前为止,业界仍然从主观上评价这种咔嗒声。“较低的咔嗒声”和“无咔嗒声工作”等描述代表了对咔嗒声的主观判断。为了消除衡量性能的主观判断因素,Maxim确定了描述咔嗒声的客观指标。本文阐述了这一指标KCP以及该参数的测试过程。

引言

的特殊要求是产品设计的关键,产品A优于其竞争产品B,而且使用更理想的原因是什么? 从性能上看,竞争产品之间的频率响应平坦度和THD+N等指标相差不大,很难区分哪一个产品性能更好。从用户接口能够评判产品的主要差异,但这在很大程度上取决于主观评价。我们可以利用客观的音频性能指标对产品比较,说明一个产品明显优于其它产品的原因。

评估音频性能的一个重要指标是在打开或关断时,耳机(或扬声器)出现的“咔嗒”声或其它奇怪的瞬态噪声。随着人们对产品性能期望值的提高,无瞬态杂音成为人们选择产品的一项重要指标,因而也是音频的关键卖点。直到目前为止,业界仍然从主观上评价这种咔嗒声,“较低的咔嗒声”和“无咔嗒声工作”等描述代表了对咔嗒声的主观判断。但是,用户的期望值在变化,设计人员需要得到评判咔嗒声的客观指标。

本文阐述了一种定量表示咔嗒声参数的方法,这种方法可以在不同产品中对产品重复比较。

咔嗒声的特征

咔嗒声是指驱动转换器打开或关闭时,在耳机或扬声器中出现的音频瞬态信号。在应用中,降低功耗是延长电池使用时间的关键,当不需要某些功能模块工作时,一般会禁用这些模块。这种功能有可能会进一步突出咔嗒声这一不利因素。当器件打开或关断时,理想元件不应出现音频输出,而实际应用中,所有的音频放大器都会产生咔嗒声。根据所用转换器(扬声器或耳机)的灵敏度、转换器与人耳的距离、放大器处理瞬变信号的能力以及听觉的敏感度,可以听不到咔嗒声。尽管确定音频阈值涉及到许多因素,可以利用放大器输出指标(与音频传输函数无关)定量对比产品的性能。

表1列出了有可能造成放大器信号瞬变的因素。

对便携式音频设备的音频放大器咔嗒声进行定量分析
Maxim将音频测试分为两类,以合理测量KCP测量。参考上面的表1,第1项(上电)和第2项(断电)属于A类。一般假设正常工作状态下,带有关断(SHDN)功能的Maxim产品在上电时具有受关断引脚(或寄存器位)控制的瞬变模式。A类并不代表正常的使用,只是在测量那些软件控制无法关断器件时才相关。第3项和第4项(B类测量)更贴近正常的使用情况。

图1和图2所示(在时域)为两个不同的耳机放大器退出关断状态的瞬态过程,将第一个交流耦合耳机放大器和第二个直流耦合耳机放大器对比,交流耦合耳机放大器退出关断时产生较大的瞬变(图1),这种瞬变产生明显的低频声音,原因是其较慢的开启过程。 (注意,时间标度是100ms/div。)

对便携式音频设备的音频放大器咔嗒声进行定量分析

第二种瞬变过程,即直流耦合耳机放大器(图2),似乎淹没在A加权滤波之前示波器的噪声底中。对于这种放大器,大部分音频来自从关断到完全工作时产生的直流失调电压。由于失调只有几个毫伏,没有经过滤波的信号不能精确决定咔嗒声的大小。采用A加权滤波后,从噪声基底中提取出直流耦合耳机放大器失调产生的咔嗒声,获得更客观的测量结果。 (注意,没有显示滤波后的信号标度V/div。)
对便携式音频设备的音频放大器咔嗒声进行定量分析

分析这一问题时,需要考虑两个方面。首先,怎样客观地测量瞬变? 其次,如果需要,采用什么标准来衡量测试结果?

咔嗒声测试方法

Maxim采用了Audio Precision的系统1和系统2 (推荐)音频分析仪测量咔嗒声(图3),也可以采用其它厂商类似测试设备。所推荐的指标KCP能够客观衡量音频放大器的咔嗒声。





对便携式音频设备的音频放大器咔嗒声进行定量分析

开始测量时,将待测设备(DUT)输出连接到负载或模拟负载(假负载)。在DUT上加载所需的SHDN和电源,将所有DUT输入交流耦合至地。不需要输入信号;输入激励包括DUT在各种工作或停止工作模式之间切换的控制信号。连接DUT输出至音频分析仪的模拟分析部分。

下一步,选择分析仪的A加权滤波(建议)或非加权22Hz至22kHz滤波器,将测量带宽限制在音频范围内。请注意,示波器的快速高电平瞬变并不表明有多少能量出现在音频频带内。人耳对扬声器或耳机瞬变信号的频率响应很有限。因此,增加A加权滤波(图4)更有利于分析,因为这样增强了人耳敏感的频率分量。某些音频分析仪不能选用A加权,这种情况下,应限制人耳频率响应的带宽。音频测试设备中常用的限制带宽是22Hz至22kHz,带宽限制滤波器大概能达到20kHz的平坦响应(通常为人耳的上限)。

对便携式音频设备的音频放大器咔嗒声进行定量分析

设置检测器为峰值读数(而不是RMS值),设置检测器采样为每秒32次。对于我们要采集的瞬变等信号,RMS检测没有作用。系统2分析仪支持更高的采样率,而每秒32次采样率能够从系统1音频分析仪获得同等的测量选项。 (每秒32次采样率是系统1模型中最快的采集设置。) 禁用音频分析仪的范围自动调整电路,手动选择能够精确跟踪预期的峰值信号幅度。系统1和系统2分析仪的范围为1倍至1024倍(0至60.21dB),步长4倍(12.04dB)。为实现精确测量,建议音频放大器咔嗒声测量的起始点采用1X/Y范围。

采用低频方波驱动SHDN引脚,以便进行重复测量。SHDN循环频率低于音频频带,周期应足够长,以确保能够采集到所有的打开和关断事件(某些型号具有较长的开启延迟)。Maxim通常选择0.5Hz周期。

工作和关断之间出现瞬变时,分析仪的直方图选项能够轻松监控DUT瞬变。可以很容易地确定峰值电压,测量期间能够迅速复位直方图。峰值电压以dBV (相对于1V的dB值)进行记录。这一指标为KCP

测试设备的重要性

上述测试方法能够支持类似器件的对比,产生可重复的客观结果。测试设备最好能够对任何大小的输入保持线性响应。例如,测试1mV冲击响应时的峰值读数应比同样脉冲宽度的100mV冲击相应低40dB。 (参见附录的测试瞬变校准)。

带有外部滤波的示波器完全可以用在这一咔嗒声测量方案中。但是,经验表明高质量耳机放大器的咔嗒声电平典型值在毫伏范围,这对于大部分示波器来说要想进行精确测量具有一定难度。可以采用示波器测试大功率放大器等电压较高的设备。

平均值重复测试

同一型号的不同器件可能产生不同的测试结果。因此,在判定某型号性能之前应测试多个器件以均衡这种差异。对于设计合理的直流耦合耳机放大器,大部分咔嗒声与输入失调电压成正比,除非经过均衡(或以别的方式消除),不同器件的输入失调电压存在一定差异。全面测试某一型号时,为确保结果的一致性,应多次测量每一工作模式的瞬变。然后,计算平均值。如果器件即将投入使用,建议进行多次测量。测试立体声或多通道产品的所有通道。

建立绝对电压电平

应根据放大器的实际应用来规定咔嗒声的绝对电压电平。例如,假定一个设备关断时产生-50dBV的瞬变。如果DUT是一个50W/8的功率放大器,满量程为+29dBV。这样,该放大器可察觉到的咔嗒声与最大峰值电压之比为:

-(+29 - (-50)) = -79dB

但是,如果DUT是20mW/16的耳机放大器,满量程大约为-1.9dBV,将相对于峰值电压比值较小:-48.1dB。

设置指标电平

尽管我们已经说明了怎样获得咔嗒声指标的客观测量方法,但还存在一个问题:精度如何?

考虑以下问题,采用上述方法测量两个耳机放大器之后,您得到了可以重复的B类咔嗒声抑制结果,第一个放大器的KCP为-59dBV,第二个是-61dBV。第二个放大器的噪声真的比第一个小很多吗? 或者说,这两个结果都是可以接受的吗? 测量结果是客观的,但是对“可接受”的理解仍然是主观的。

一个能够接受、能够检测到的咔嗒声抑制电平取决于多个因素:待测耳机/扬声器的效率、人耳到转换器之间的典型距离、SHDN循环频率以及收听时的背景噪声电平等。

在很多应用中,尽管许多因素会影响可接受咔嗒声电平的建立,我们还是可以规定一个可信的指标基准。注意,Maxim耳机放大器B类咔嗒声的测试结果(表2),所有测试均采用一个32负载电阻,每一KCP值代表每个端口四次采样的平均值。

对便携式音频设备的音频放大器咔嗒声进行定量分析

以上数据是Maxim对KCP性能的测试结果。为最终消除放大器性能测试中的主观因素,Maxim建议其它半导体供应商采用这一方法,以及定义的KCP参数。

附录 校准等效设备

本应用笔记中获得咔嗒声性能指标的客观测试方案使用了Audio Precision的系统1以及系统2音频分析仪。如果没有系统1或系统2分析仪,可采用以下方法。

KCP性能测量可以使用其它生产商提供的等效测试设备实现。图A显示了音频分析仪和DUT的一般测试设置。

对便携式音频设备的音频放大器咔嗒声进行定量分析

在记录测试结果、对结果进行直接对比之前,应对测试装置进行校准。此外,还需要验证等效分析仪记录的总能量,事实上,这一记录与输入幅度成线性关系。只有这样,才能准确记录咔嗒声的能量,特别是在音频频带出现快速上升瞬变时。简单校准需要一个函数发生器和一个同等的分析仪。 (参考图B示例。) 按以下步骤进行校准: 1在等效音频分析仪的输入加载一个幅度已知的0.5Hz方波。 2 设置同等分析仪检测A加权后的峰值电压。 3 记录各种输入信号幅度的峰值电压读数。

对便携式音频设备的音频放大器咔嗒声进行定量分析

下面的表A显示了系统2 Audio Precision音频分析仪设置为A加权、32次/秒采样的校准结果。1X/Y自动范围设置为1mVP-P至40mVP-P的输入信号产生了6dB的加权因子。该6dB加权因子与Audio Precision分析仪的A加权受限传输函数有关。输入信号大于40mVP-P时,对于这一特殊设置,校准结果出现非线性。该范围适用于大部分放大器。

对便携式音频设备的音频放大器咔嗒声进行定量分析

这一校准措施可应用于同等分析仪,以确保精确的咔嗒声性能测量。此外,确定相同的校准值以及合适的输入信号范围后,可以采用同等音频分析仪准确对比两个放大器的咔嗒声性能指标。



评论


相关推荐

技术专区

关闭