新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > 一种嵌入式射频光传输模块实现方案

一种嵌入式射频光传输模块实现方案

作者:时间:2011-09-22来源:网络收藏

1.引言

本文引用地址:http://www.eepw.com.cn/article/155696.htm

  光纤直放站主要由光近端机、光纤、光远端机几个部分组成。光近端机和光远端机都包括单元和光单元。信号的分下行链路和上行链路。在下行链路中,光近端机接收来自基站的无线信号,通过电光转换,电信号转变为光信号,从光近端机输入至光纤,经过光纤到光远端机,光远端机把光信号转为电信号,进入单元进行放大,信号经过放大后送入远端天线发送出去,覆盖目标区域。上行链路的工作原理与下行链路类似,手机发射的信号通过远端天线至光远端机,再到近端机,回到基站。光纤直放站近端机的定向天线收到基站的下行信号(以GSM信号为例,频段为935MHz-960M Hz)送至近端主机,放大后送到光端机内进行电/光转换,产生波长为1550nm的光信号。因为光纤中有波长为1310nm的上行光信号,所以下行的1550nm的光信号要通过光波分复用器耦合到光纤中,最后经光纤传到远端机;远端光波分复用器将1550nm和1310nm波长的光信号分开后,让1550nm波长的光信号输入光端机进行光/电转换,还原成下行信号,再经远端主机内部功放放大,由全向天线发射出去送给移动台。移动台的上行信号(频段为890MHz-915M Hz)逆向送到基站,这样就完成了基站与移动台的信号联系,建立通话。其原理如图1 所示。

  

光纤直放站原理图

  由于光纤直放站系统使用的特点,其安装调试工作麻烦,维护工作开销巨大。为了增加系统的可靠性并降低系统安装调试的复杂性,越来越多的直放站生产商都要求光具有智能化功能,以对直放站的实时监控,从而方便工作人员的调试、维护和管理。本文讨论了在传统光基础上通过增加单元,以的智能化。

  2.系统硬件设计

  2.1 监控电路设计

  监控电路是光模块智能化的核心部分,图2 是本设计中光模块的监控系统框图。该部分完成各监控量的采集、控制等工作。本设计采用C8051F023型单片机实现对光模块的控制,C8051F023内部集成了一个8位8输入的ADC、一个10位8输入的ADC和两个12位DAC,非常方便对参数的采集和对压控器件的控制[1][2]。

  在信号的输入和输出端,功率检测电路将耦合进来的能量进行放大,并实现功率/电压转换,再对产生的电压信号进行A/D转换,在程序中采用查找表的方法,即能得到输入/输出的功率值。C8051F023根据检测到的功率值,调整链路中的衰减值。在射频信号输入端,单片机通过D/A转换,控制压控衰减器;而在输出端,则通过程控衰减器控制信号增益。偏置电路为激光器(LD)的工作提供合适的驱动电流。单片机通过A/D转换采集到激光器的偏置电压,在程序中光功率与电压同样采用查找表的方法直接转换,而偏置电流则通过电压与电流的线性关系转换得到。当某些因素导致激光器驱动电流过大或过小时,单片机通过改变D/A输出电压,来调整偏置电路的输出电流,使激光器的发光功率维持在正常水平。另外,由于设计需要监测模块的实时温度,需加一个热敏电阻,根据电压与温度值的关系曲线图,通过热敏电阻的电压值变化而采集出温度值的变化情况。

  

光模块的监控电路

  2.2 数据传送电路设计[3][4]

  本设计采用射频收发芯片CC1000作为数传芯片。CC1000是根据Chipcon 公司的SmartRF技术制造出的可编程高频单片收发芯片,主要用于工作频带在315、868 及915MHz 的ISM(工业、科学及医疗)方面和SDR(短距离通讯)方面,可在300-1000MHz 范围内通过编程工作。其主要工作参数能通过串行总线接口编程改变,这样使CC1000 使用更方便更灵活。CC1000 芯片含有三条串行数据线接口PDATA、PCLK、PALE 用于配置内部寄存器实现收发等各种功能控制,能够与多种单片机(MSC51、ARM、AVR、PIC 等)直接兼容连接。

  CC1000 与C8051F023的连接图如图3 所示。单片机使用三个输出管脚用于连接CC1000的三串行配置口(PDATA、PCLK、PALE),以配置CC1000的工作模式,其中PDATA 必须是双向管脚,用于程序数据的输入输出。信号接口由DIO和DCLK组成,在本设计中它们分别与单片机的TXD1和RXD1连接,实现数据的半双工式收发。管脚CHP_OUT用于监视频率锁定状态,当CC1000内部的PLL锁定时,该引脚输出高电平。另外单片机可通过A/D转换检测RSSI信号的强度。

  

CC1000 与C8051F023的连接图

  近端模块与远端模块之间采用FSK通信,在图3 中,引脚RF_OUT和RF_IN分别用于发送FSK_OUT信号和接收FSK_IN信号。通信数据FSK_OUT由近端模块中的CC1000发出,结合图2 可知,FSK_OUT信号通过耦合器耦合到射频信号中,经过光/电转换进入光纤传输至远端模块;在远端,光信号被还原为射频信号,通过低通滤波得到FSK信号,此时称FSK_IN信号,该信号被远端模块的CC1000接收。远端模块发送给近端模块的数据依据同样的原理传输。模块之间的FSK通信大大提高了对光模块的监测和控制能力。

  C8051F023有两个UART接口,在本设计中UART0与上位机通信,UART1则用于与CC1000的数据传输。

linux操作系统文章专题:linux操作系统详解(linux不再难懂)

上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭