【2022年11月24日,德国慕尼黑讯】USB供电(USB-PD)已成为快速充电以及使用统一Type-C连接器为各种移动和电池供电设备供电的主流标准。在最新发布的USB-PD rev 3.1标准中,扩展功率范围(EPR)规格可支持宽输出电压范围和高功率传输。统一化和大功率容量再加上低系统成本的小外型尺寸已成为推动适配器和充电器市场发展的主要驱动力。为了加速这一趋势,英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)推出全新XDP™数字电源XDPS2221。这款用于USB-PD的高度集
关键字:
英飞凌 PFC和混合反激式组合IC GaN USB-C EPR适配器
以存储芯片厂商为代表,包括美光、SK海力士等在内,均宣布将减少明年的资本支出,这些钱一般用于扩建扩产等,反映出行业的低迷。实际上,整个半导体行业的日子都不太好过。日前,统计机构IC Insights发布最新研报,预测明年全产业的资本支出将同比下滑19%,在1466亿美元左右。据悉,这是继2008~2009金融危机以来的最大降幅,当时的降幅一度高达40%。可做对比的是,半导体资本支出在过去今年迎来了高速增长,2021年增长35%达到1531亿美元,今年预计将增长19%达到1817亿美元,创下历史新高。
关键字:
半导体行业 市场 IC Insights
此电源设计最大输出功率为65W,配备1A1C双口输出,单USB-C口输出65W(20V/3.25A),单USB-A口输出;双口同时输出时,C+A同降为5V方案全系列采用双面板、最简化设计理念,尺寸才51X51X31mm!上下两片1.0mm左右厚铜散热既满足EMI又导热好!通标变压器设计,21V效率最高达到93%,驱动与MOS均采用美国安森美半导体技术!►场景应用图►展示板照片►方案方块图►C口支持协议►核心技术优势1.51.5*51.5*31 超小体积 功率密度:1.26cm³/W2. QR架构,COST
关键字:
安森美 NCP1342 65W PD GAN 1A1C 超小尺寸PD
据外媒《NBC》报道,近日,晶圆代工厂商格芯(GlobalFoundries)获得3000万美元政府基金,在其佛蒙特州EssexJunction工厂研发和生产GaN芯片。该资金是2022年综合拨款法案的一部分。这些芯片被用于智能手机、射频无线基础设施、电动汽车、电网等领域。格芯称,电动汽车的普及、电网升级改造以及5G、6G智能手机上更快的数据传输给下一代半导体带来需求。格芯总裁兼首席执行官Thomas Caulfield表示,GaN芯片将比前几代芯片能更好地处理高热量和电力需求。Caulfield在一份声
关键字:
格芯获 GaN
EPC9176是一款基于氮化镓器件的逆变器参考设计,增强了电机驱动系统的性能、续航能力、精度和扭矩,同时简化设计。该逆变器尺寸极小,可集成到电机外壳中,从而实现最低的EMI、最高的功率密度和最轻盈。 宜普电源转换公司(EPC)宣布推出EPC9176。这是一款三相BLDC电机驱动逆变器,采用EPC23102 ePower™ 功率级GaN IC,内含栅极驱动器功能和两个具有5.2 mΩ典型导通电阻的GaN FET。EPC9176在20 V和80 V之间的输入电源电压下工作,可提供高达28 Apk(2
关键字:
GaN IC 电机驱动器
现阶段硅元件的切换频率极限约为65~95kHz,工作频率再往上升,将会导致硅MOSFET耗损、切换损失变大;再者Qg的大小也会影响关断速度,而硅元件也无法再提升。因此开发了由两种或三种材料制成的化合物半导体GaN氮化镓和SiC碳化硅功率电晶体,虽然它们比硅更难制造及更昂贵,但也具有独特的优势和优越的特性,使得这些器件可与寿命长的硅功率LDMOS MOSFET和超结MOSFET竞争。GaN和SiC器件在某些方面相似,可以帮助下一个产品设计做出更适合的决定。 GaN氮化镓是最接近理想的半导体开关的器
关键字:
GaN 氮化镓 SiC 碳化硅 NCP51561 onsemi
氮化镓 (GaN) 是需要高频率工作(高 Fmax)、高功率密度和高效率的应用的理想选择。与硅相比,GaN 具有达 3.4 eV 的 3 倍带隙,达 3.3 MV/cm 的 20 倍临界电场击穿,达 2,000 cm2/V·s 的 1.3 倍电子迁移率,这意味着与 RDS(ON) 和击穿电压相同的硅基器件相比,GaN RF 高电子迁移率晶体管(HEMT)的尺寸要小得多。因此,GaN RF HEMT 的应用超出了蜂窝基站和国防雷达范畴,在所有 RF 细分市场中获得应用。其中许多应用需要很长的使用寿
关键字:
Wolfspeed 放大器 GaN
氮化镓 (GaN) 是电力电子行业的热门话题,因为它可以使得 80Plus 钛电源、3.8kW/L 电动汽车 (EV) 车载充电器和 EV 充电站等设计得以实现。在许多应用中, GaN 能够提高功率密度和效率,因此它取代了传统的硅金属氧化物半导体场效应晶体管 (MOSFET)。但由于 GaN 的电气特性和它所能实现的性能,使用 GaN 进行设计面临与硅不同的一系列挑战。不同类型的 GaN FET 具有不同的器件结构。GaN FET 包括耗尽型 (d-mode)、增强型 (e-mode)、共源共栅型 (ca
关键字:
TI GaN
西门子数字化工业软件近日与半导体晶圆制造大厂联华电子 (UMC) 合作,面向联华电子的晶圆堆叠 (wafer-on-wafer) 和芯片晶圆堆叠 (chip-on-wafer) 技术,提供新的多芯片 3D IC (三维集成电路) 规划、装配验证和寄生参数提取 (PEX) 工作流程。联电将同时向全球客户提供此项新流程。通过在单个封装组件中提供硅片或小芯片 (chiplet) 彼此堆叠的技术,客户可以在相同甚至更小的芯片面积上实现多个组件功能。相比于在 PCB
关键字:
西门子 联华电子 3D IC 混合键合流程
2022年9月20日,致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下友尚推出基于安森美(onsemi)NCP1623和NCP1343产品以及氮化镓系统公司(GaN System)GS-065-011-2-L功率晶体管的PD快充电源方案。 图示1-大联大友尚基于onsemi和GaN System产品的PD快充电源方案的展示板图 以手机、电脑为代表的移动智能设备已经成为人们日常生活的重要工具,然而随着这些设备所覆盖的功能越来越多,设备有限的续航能力已经无法满足用户对
关键字:
大联大友尚 onsemi GaN System PD快充电源
氮化镓 (GaN) 是电力电子行业的热门话题,因为它可以使得 80Plus 钛电源、3.8kW/L 电动汽车 (EV) 车载充电器和 EV 充电站等设计得以实现。在许多应用中, GaN 能够提高功率密度和效率,因此它取代了传统的硅金属氧化物半导体场效应晶体管 (MOSFET)。但由于 GaN 的电气特性和它所能实现的性能,使用 GaN 进行设计面临与硅不同的一系列挑战。不同类型的 GaN FET 具有不同的器件结构。GaN FET 包括耗尽型 (d-mode)、增强型 (e-mode)、共源共栅型 (ca
关键字:
德州仪器 GaN 功率密度
虽然增加可再生能源是全球的大趋势,但这还不够,能源效率是另一个重点领域,这是因为服务器及其冷却系统对能源消耗,占据了数据中心将近40%的运营成本。GaN具有独特的优势,提供卓越的性能和效率,并彻底改变数据中心的配电和转换、节能、减少对冷却系统的需求,并最终使数据中心更具成本效益和可扩展性。数字化和云端服务的快速建置推动了全球数据服务器的产业规模的成长。今天,数据服务器消耗了全球近1%的电力,这个数字预计会不断的成长下去。次世代的产业趋势,例如虚拟世界、增强实境和虚拟现实,所消耗大量电力将远超现今地球上所能
关键字:
GaN 数据服务器 效率
在电力电子应用中,为了满足更高能效和更高开关频率的要求,功率密度正在成为关键的指标之一。基于硅(Si)的技术日趋接近发展极限,高频性能和能量密度不断下降,功率半导体材料也在从第一代的硅基材料发展到第二代的砷化镓后,正式开启了第三代宽禁带技术如碳化硅(SiC)和氮化镓(GaN)的应用之门。SiC的耐高压能力是硅的10倍,耐高温能力是硅的2倍,高频能力是硅的2倍。相同电气参数产品,采用SiC材料可缩小体积50%,降低能量损耗80%。同样,GaN也有着许多出色的性能,它的带隙为3.2eV,几乎比硅的1.1eV带
关键字:
贸泽电子 GaN
和传统的硅功率半导体相比,GaN(氮化镓)和 SiC(碳化硅)有着更高的电压能力、更快的开关速度、更高的工作温度、更低导通电阻、功率耗散小、能效高等共同的优异的性能 , 是近几年来新兴的半导体材料。但他们也存在着各自不同的特性,简单来说,GaN
的开关速度比 SiC 快,SiC 工作电压比 GaN 更高。GaN
的寄生参数极小,开关速度极高,比较适合高频应用,例如:电动汽车的 DC-DC(直流 - 直流)转换电路、OBC(车载充电)、低功率开关电源以及蜂窝基站功率放大器、雷达、卫星发射器和通用射频放大
关键字:
202207 东芝 共源共栅 GaN
· 西门子先进的混合信号仿真平台可加速混合信号验证,助力提升生产效率多达10倍· Symphony Pro 支持 Accellera 和其他先进的数字验证方法学,适用于当今前沿的混合信号设计 西门子数字化工业软件近日推出 Symphony™ Pro 平台,基于原有的 Symphony 混合信号验证能力,进一步扩展功能,以全面、直观的可视化调试集成环境支持新的Accellera 标准化验证方法学,使得生产效率比传统解决方案提升
关键字:
西门子 混合信号 IC 验证
gan ic介绍
您好,目前还没有人创建词条gan ic!
欢迎您创建该词条,阐述对gan ic的理解,并与今后在此搜索gan ic的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473