具有感兴趣区域的静止图像压缩编码算法研究
视觉选择性与客体的特性有关,人眼对空间频率接近于零的平滑区域和空间频率相似纹理区域有很大的钝性,所以不变与规则变化的场景很容易在人的意识中被遗忘,人类视觉通常只对突变和极不规则变化的区域感兴趣。这种与生俱来的选择性使视觉只限定在有限的目标上。 1.1 静态对比灵敏度 人眼主观上可辨别的最小亮度差别所需要的最小光强差值称为亮度的辨别阀值。也就是说,当刺激光强I增大时,最初感觉不出,直到I变化到I+ΔI时人眼就感觉到亮度有变化了。人眼对亮度光强变化的响应是非线性的,比值ΔI/I称为对比灵敏度。在相当宽的光强范围内,ΔI/I保持常数为0.02,但在I很低或很高时不是常数。如果有背景,则对比灵敏度不仅与目标物的光强度I有关,而且与背景亮度I。有关。图1给出了有背景和无背景时人眼的静态对比灵敏度曲线。
此外,人眼的对比灵敏度还与刺激的空间变化周期(空间变化周期是指刺激的明暗不变,只改变明暗的空间间隔)有关。如果亮度固定在一定水平下,则对比灵敏度与光刺激的空间变化周期之间的关系如图2所示。这一关系通常被称为人眼的调制传递函数。图2中还给出了等亮度的色差信号Y-R和Y-B的对比灵敏度曲线。由图1和图2可得到以下结论: (1)恢复图像的误差如果低于对比灵敏度,则不会被人眼觉察。 (2)高频部分在相同的灵敏度阈值下,色差信号Y-R的空间频率只有亮度Y的一半,Y-B则为Y的1/4,通常表示色差信号所需的像素比亮度要少得多。 (3)在相同的灵敏度阈值下,斜向栅格的空间频率只有正常栅格的0.7,因此按斜向栅格对图像数据采样所需的频率较低。
(4)高频端的灵敏度要小于低频端,因此对这些部分的量化误差可大一些。 1.2 具有感兴趣区域的人眼视觉特性 人们在观察和理解图像时常常不自觉地对其中某些区域产生兴趣,把这些区域称为视觉感兴趣区域。整幅图像的主观视觉质量取决于感兴趣区域的视觉质量,而不感兴趣区域的降质常常不易被人觉察,对整幅图像视觉质量的影响较小。例如对一副人像照片,反映一个人主要特征的是面部信息,在进行图像压缩时,人的面部信息与其它不重要的信息不必采用相同的压缩比。显然,感兴趣区域的视觉特性也是一种视觉掩盖效应。 2 嵌入式零树小波编码及算法 2.1 EZW编码 一幅图像经过三级小波分解后形成十个子带,如图3所示。小波系数的分布特点是越往低频子带,系数值越大,包含的图像信息越多。如图3中的LL3子带,越是高频子带,系数值越小,包含的图像信息越小。在系数数值相同时,低频子带反映图像的低频信息,对视觉比较重要;而高频子带反映图像的高频信息,对视觉不太重要。应选择先传输较低频系数的重要比特,后传输较高频系数的重要比特。正是由于小波系数具有的这些特点,它非常适合于嵌入式编码算法。
嵌入式零树小波编码EZW(Embedded Zerotree Wavelet)方法是对整幅图像进行同一级别编码的方法,图像中的重要区域(感兴趣区域)与背景区域(非感兴趣区域)具有同样的编码级数。EZW编码算是一个简单而有效的图像编码算法,这种算法得到的比特流中的比特按其重要性排序。使用这种算法,编码者能够在任一点结束编码,允许精确到任一个目标比特率或目标失真率。 2.2 EZW算法 EZW算法利用小波系数的特点较好地实现了图像编码的嵌入功能,为了改善小波系数重要图的压缩,定义了一个零数的数据结构,即一个小波系数χ。对于一个给定的门限T,如果|χ|
图5是EZW_ROI算法的编码结构框图。 3.2 EZW_ROI解码算法 对编码图像进行解码时,与编码过程相反,也分三步进行: (1)对低频子带中的感兴趣区域内图像进行与EZW算法同样的零树编码。 (2)对低频子带中的感兴趣区域外图像进行简单的位解码。 (3)消除边缘效应:在以上两步的基础上,对感兴趣区域的四周做3%26;#215;3的均值滤波,以消除感兴趣区域边缘的影响,使得感兴趣区域外的图像在视觉上差别变弱。 图6是EZW_ROI算法的解码结构框图。
4 应用实例 在研究中采用了一幅标准的8bpp的灰度人像,首先,确定感兴趣区域为人像的面部,对原始图像进行四级的小波分解,小波变换采用S+P变换;最后对图像进行32倍压缩,即压缩后的比特率为0.25bpp。用EZW算法和EZW_ROI算法恢复的图像如图7所示。在信道资源和存储空间有限的条件下,为了提高感兴趣区域的图像质量,采用具有感兴趣区域的图像压缩方式,对感兴趣区域背景图像采用不同的压缩步骤,使图像中的重要信息尽可能少损失。试验证明,在高压缩比的情况下,EZW_ROI算法的重建图像比EZW算法的重建图像具有更好的视觉效果。 











评论