用电附件过载引发汽车电源设计的新思考
在第四代汽车电子系统阶段,微处理器和数字信号处理器在汽车中的应用更为普及。这些21世纪的系统中,每辆车的汽车电子系统采用了40到80个以上的微处理器和35到100个以上的电机。新的系统由软件控制,并广泛地依赖于廉价和鲁棒的存储器硬件的可用性。
将来汽车中电子系统的数量可能不会像二代时增长那么快,但是,软件系统将呈指数增长。例如,目前正呈现的一个趋势就是通过免疫系统工程把在线诊断(OBD)升级为下一代的OBD1。之所以出现这种趋势是因为:目前的系统复杂性如此之高,以至于接近2/3的故障模式根本无法解读,并且将继续恶化。
要诊断未来的汽车电子系统,将需要扩充在线计算软件以执行诊断,因为将来的系统所包含的电气化高安全性子系统比现有的系统要多一个数量级以上,这些高安全性子系统包含在此已讨论过的电气化子系统及更多的子系统。目前,电子节气门控制(ETC)和电子助力转向系统(EPS)已经被延伸到电子稳定程序(ESP)系统,以管理汽车纵向运动控制到电子受控刹车(ECB)系统等等功能。这些子系统成为表中所列的第6类。
随着汽车电子系统的增多和汽车电力供电系统负担的加重,设计工程师如何才能减轻各种各样汽车用电设备的影响?虽然这些用电设备的平均功率需求以每年 110W的速度持续增长,实际上这不是一个小数,因为我们已经看到汽车电子系统的用电量已经让供电系统超负荷运行。问题是什么才是让汽车供电系统崩溃的“ 最后一根稻草”?什么时候会发生这种情况?
当混沌系统行为受到某种压力因素作用的时候,如果该压力因素的增长悄无声息,最终会接近一个崩溃点或倾翻点。随着对汽车PowerNet需求的增加,汽车上正在发生这种情况。从电网稳定度的观点看,这种情况并不是如此严重,因为有汽车蓄
PowerNet瞬间波动所带来的问题
如上所述,21世纪的汽车电子系统高度依赖于软件,因此,越来越易于受到PowerNet可变性的影响,并且拥挤杂乱的电力分配网络对用电量的瞬间变化更为敏感。制造商要在更敏感的电子模块中安装电源线滤波和较大的电容器组,以解决日益恶化的电源分配网络所面临的问题。实际上依然是所有电子模块都具有不同级别的噪声免疫性;有时在已恶化的电源分配网络与模块本身负载开关的共同作用下,可能导致软件故障。造成如此混乱的原因在于:微处理器或一些支持逻辑功能易于受到同时出现的电源线波动、涌动和负载驱动脉冲的影响。
目前,汽车制造商正寻求利用超级电容分布式模块或本地电能储存器件,那就可以向与ECU有关的位置提供平滑和稳定的PowerNet。下图描述分布式电子模块、机电传动装置和超级电容部分储能器件之间实现平衡的分层视图。
在这个高度简化的描述中,超级电容分布模块或双层电容(DLC)紧靠高耗能用电负载,如EPS(1.2KW)、电子机械刹车(1到2KW)和新型照明系统 (如最近出现的白光LED头灯)。本地分布式模块为高峰负载供电,避免造成来自交流发电机和电池的14V电源线出现强烈的波动。
高耗能负载的切换,如上图中加亮的那些部分对汽车电力分配网络—14V PowerNet—有重大的干扰。例如,在一些最新提出的EPS设计中,电动助力转向(EPS)系统有130A的电力需求,最高达到160A。过去,人们假设EPS电力需求在85A(1.2KW)到130A(1.8KW)范围内,如果超出那个范围就表示PowerNet处于最坏供电状态,就可能危及EPS 的正常运行。当引擎几乎处于怠速且连续负载已经是27A加67A或1.3KW时,把1.2到1.8KW的瞬时负载加在PowerNet上,意味着电力分配系统的电压波动为14.2V到12.8V;这也是电池电位的波动范围。如果电力分配系统电压下降10%,那么,那么从前大灯变暗就显而易见,并且EPS性能也会退化,更不要提PowerNet瞬态波动传导到所有其它相连ECU所引起的问题了。
负载平滑方法
本文前半部分描绘了汽车附件电力瞬态超载的情况,这里将通 过仿真对此做进一步的解释。在图解说明的过程中,假设电动助力系统(EPS)工作的过程中,引擎管理和一些气候控制电子系统也在连续地工作。假设EPS从汽车电力线(
在如下所示的第一种情况下,当PowerNet相对处于重载时EPS被激活,但是,没有安装超级电容电力分配模块。相连负载代表27A的引擎管理、55A 的气候控制和15A的遥控电子控制单元(ECU)。例如,该遥控ECU可能是音响模块,并有意显示为采用本地电解电容器做滤波和平滑。
图:该PowerNet为处于工作状态的EPS供电,但是,没有安装超级电容分配模块。
在上图中,汽车充电系统由交流发电机和铅酸
当EPS工作时,下图描绘了上述电路引起的PowerNet瞬态波动。注意:当电力分配网络稳定时,交流发电机提供给电池的最初充电电流。
图:当EPS被激活时,造成PowerNet的瞬态波动。
评论