新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 汽车电子技术--线控技术

汽车电子技术--线控技术

作者: 时间:2013-04-06 来源:网络 收藏


b.设计制动系统时必须考虑制动系统的失效问题。不论是ECU、传感器、制动器本身、线束失效,都应能使制动系统保证制动的基本性能,除了ECU可以采用冗余设计外,实现线控制动的一个关键技术是制动系统失效时的信息通讯协议,如TTP/C等的研究应用。

c.实现线控制动系统和汽车底盘其他控制系统的集成,仍有待研究。

d.成本比原有液压制动系统高,提高线控制动系统的性价比也是需要解决的问题。

3.线控制动的应用

随着技术的进步,上述的各种问题会逐步得到解决。戴姆勒-克莱斯勒汽车公司已经把一种线控制动系统——测控一体化制动系统安装在奔驰乘用车上,它是一种功能强大的机电一体化的系统。在汽车运行中,系统感知制动踏板的动作,并把相关信息传递给控制单元,控制单元发出指令给执行器,执行器控制各个车轮的制动,它可以根据制动踏板的加速度来识别是否是紧急制动,并做出迅速反应,缩短制动距离,这种系统会增加驾驶员的安全感和舒适感,使停车过程平顺。不久的将来会有更多的线控制动系统得到应用,很多汽车和零部件厂商都进行了线控制动系统的研究和推广,博世、西门子、特维斯等公司已经研制出一些试验成果,线控制动系统必将取代传统制动系统,汽车底盘进一步一体化、集成化,制动系统性能也会发生质的飞跃。

在2001年日内瓦汽车展上亮相的Bertone - SKFFilo概念车采用的线控制动系统就是由SKF与意大利著名制动系统生产商Brembo合作完成的。该车使用了驾驶员操作系统GUIDA,并进行了部分改进。当需要制动时,驾驶员只需双手挤压GUIDA的手柄。

一个数字化的命令通过导线传递给每个车轮上的SKF智能机电执行器单元,执行器将电信号转换成动作,对制动蹄片施加制动力,完成车辆制动。在SKF线控制动系统中,每个车轮的制动是独立的,并且都有备用系统。

(二)线控转向系统

线控转向系统简称SBW(Steering By Wire System),它由具有容错功能的网络相连接的控制单元、执行器、传感器和单元组成,如图3所示,取消了转向盘与转向轮之间的机械连接,完全由电实现转向,摆脱了传统转向系统的各种限制。不但可以自由设计汽车转向的力传递特性,而且可以设计汽车转向的角传递特性,给汽车转向特性的设计带来无限的空间。

驾驶员操作转向盘时,转向盘传感器检测驾驶员的转向数据(横摆角传感器、摄像机等),向转向辅助系统ECU提供环境检测数据,转向数据和环境检测数据通过网络总线实时传送给电子控制单元ECU,ECU按照驾驶员的转向数据和环境检测数据,控制转向执行器动作实现转向,并将车轮的转角、转矩和路感等反馈给驾驶员。为确保转向系统安全可靠,系统设置了单元,在紧急情况下,系统会忽略错误信息,使车辆安全平稳地运行。

1.线控转向系统优点

线控转向系统能满足环保、节能和安全的汽车工业发展方向,是整个汽车智能化和自动化的的一个分支,具有良好的商业化和产业化的市场前景。其优点主要有以下几点。

a.改善了安全性。取消了转向柱等机械连接,避免了撞车事故中转向柱对驾驶员的伤害;电控单元根据汽车的行驶状态对驾驶员的操作做出相应的调整,当汽车运行在非正常工况时,能够自动对汽车进行稳定控制。

b.提高了舒适性。由于取消了机械结构连接,驾驶员的腿部活动空间明显增大,而且地面的不平和转向轮的不平衡不会传递到转向轴上,从而减缓了驾驶员的疲劳。

c.经济性好。取消了转向柱等机械连接,减轻了转向机械结构的质量,降低了汽车零部件的制造成本,改善了整车燃油经济性。

d.操纵稳定性好。线控转向系统改善了传统汽车转向系统不能解决的汽车转向过程中转向力和转向响应时间的矛盾,使得转向系统和转向盘同步工作,控制更加灵敏;具有变传动比特点的线控系统,克服了传统的固定转向角传动比所带来的转向特性随着汽车行驶姿态的不同而变化的缺点;通过优化控制稳定性因数,能提高整车的操纵稳定性。

e.个性化的设置。可以根据驾驶员的要求设置转向传动比和转向盘反馈力矩,以满足不同驾驶员的要求和适应不同的驾驶环境,与转向相关的驾驶行为都可以通过软件来设置与实现。

2.线控转向系统应用

2005年12月6~9日,2005上海国际汽车零部件及汽车用品展览会在上海国际展览中心举行,同济大学自主研发的“春晖三号—嘉乐”微型电动轿车在展会中亮相。“春晖三号—嘉乐”酷似甲壳虫,其最大亮点就是采用了线控转向技术。属于线控转向四轮驱动的微型概念车。

863计划电动汽车专项首席科学家、同济大学校长万钢教授领衔研发了“线控转向四轮驱动微电动轿车技术”汽车。汽车的4个车轮边上各有一个轮毂电机,通过线传电控技术控制车轮的转向和车速,提高了整车的主动安全性和操纵稳定性。同时,该车采用了高能蓄电池和小型氢燃料电池的混合动力,凸显出环保、节能的理念。

(三)线控油门(throttle by-wire)

线控油门,也称为电控油门,即发动机的油门是通过电子控制的。传统的油门控制方式是驾驶员通过踩油门踏板,由油门拉杆直接控制发动机油门的开合程度,从而决定加速或减速,驾驶员的动作与油门动作之间是通过拉杆的机械作用连接的。而线控油门用电子连接代替机械连接,驾驶员仍然通过踩油门踏板控制拉杆,拉杆不是直接连接到油门,而是连着一个油门踏板位置传感器,传感器将拉杆的位置变化转变为电信号传送至汽车的电子控制单元,电子控制单元将采集到的相关传感器信号经过处理后发送指令至油门执行器控制模块,油门执行器控制模块再发送信号给油门执行器,从而控制油门的开合程度。也就是说驾驶员的动作与油门的动作之间是通过电子元件的电信号连接的。线控油门比传统油门控制方式精确,发动机能够根据汽车的各种行驶信息,精确调节进入气缸的燃油空气混合气,改善发动机的燃烧状况,从而大大提高了汽车的动力性和经济性。

丰田公司在Lexus旗舰车型LS430上采用了全电子的线控油门系统,如图4所示。系统有2个加速踏板位置传感器,都发送数据给发动机控制单元ECM,如果其中一个加速踏板位置传感器没有信号,汽车仍能行驶,同时发动机报警灯点亮;如果2个加速踏板位置传感器都没有信号,则发动机工作在怠速状态。线控油门系统根据驾驶员的动作,分析驾驶员的意图,精确地控制油门,增加了驾驶稳定性和动力经济性。

在新一代雅阁V6轿车的2.4L和3.0L发动机上就采用了线控油门的新技术。通过传感器监测油门踏板位置,ECU对动力进行控制。其优点是改善了起步的平顺性、提高了燃油经济性,缺点是发动机响应稍有滞后。此外由带来的另一个好处就是定速巡航功能,其控制键被集成在转向盘上,操作简单便捷。

本田汽车公司Civic系列2005年演进至第八代。该车采用了1台1.8L四气缸发动机,此款最新开发的1.8Li-VTEC(智能型电控可变气门正时和升程)直列4缸发动机能够爆发出103kW的最大功率,峰值转矩可以达到174Nm,几乎超过了所有自然进气式同排量的国产车型。这台发动机应用了本田最新的i-VTEC技术,配以采用的节气门,能够非常有效地提高燃油经济性,降低有害物的排放。而且进气效率和压缩比都进一步提高,造就了强大的输出功率。

(四)第一辆可驾驶燃料电池线控汽车——通用HY

HY线控汽车一改传统机械连杆的传动方式,采用电子信号来操纵油门、制动和转向机构。取消了传统的转向盘、油门、制动踏板,所有的操作都集中在一个手柄上,驾驶员可以用一只手完成所有的操作。当驾驶员要加速或减速时,可以向左或者向右推动手柄;制动按钮也安装在这个手柄上,要制动时按一下制动按钮;当转弯时,驾驶员只需向上或者向下推动手柄。

电子线控装置构成了一套操作灵活方便的控制单元,这一套控制单元被称为“X-drive”。它取代了传统的转向盘等,使得驾驶员用一只手就可以完成所有的加速、减速(制动)、转弯等操作。

传统的汽车是通过一套机械装置,比如转向杆等,通过操纵转向盘转动而使车轮转动。线控技术是将驾驶员要转向的指令转化为电子脉冲信号,传感器捕捉电子脉冲信号,这个电子脉冲信号驱动由电子控制的电机来使得车轮转向架转动。线控系统就是将驾驶员的指令转化成电信号,用这个电信号去驱动电机。由于软件决定了汽车行驶特征,比如加速、减速(制动)、转弯等,所有的工作只是转载、执行相应的软件程序。

三、汽车线控技术的应用前景

在国内,除了同济大学研究完成的线控转向系统外,由北京理工大学完成的“一种电动车辆动力系统关键技术产品及其应用”获得了2004年度国家技术发明奖。其中的一项技术就是利用线控同步换档和行星传动技术,取消了主离合器,简化了换档机构,研制了一种结构简单、性能匹配优良的线控行星变速器。国内的一些高校也正在进行线控技术的研究。

线控技术研究的难点在于高性能控制器的研制,要求在整个系统中有精确高速的通讯协议网络,使控制中心和执行器之间能完全协调、匹配工作;而且需要高效的容错技术,使得系统出现故障时能够保障一定的安全,即系统有好的可靠性。

目前线控技术在汽车中的应用还不成熟。但随着汽车各系统的电子化、集成化的发展需要,线控技术发展迅速,作为一种汽车高新电子技术,线控技术必将得到广泛的应用。但电子化不可能完全取代机械化,机械系统的损坏通常都是有过程的,而线控制系统的失效是瞬间的。如果线控制系统失效那一刻汽车的速度行驶过高,造成的后果就可能非常严重。电子控制要完全取代机械操作还需要时间。(end)

上一页 1 2 下一页

评论


相关推荐

技术专区

关闭