新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 嵌入式Linux系统图形及图形用户界面

嵌入式Linux系统图形及图形用户界面

作者:时间:2012-05-22来源:网络收藏

本文首先概述了Linux图形领域的基本设施,然后描述了一些可供使用的高级图形库以及支持系统。希望对的开发有所帮助。

1Linux图形领域的基础设施

本小节首先向读者描述Linux图形领域中常见的基础设施。之所以称为基础设施,是因为这些系统(或者函数库),一般作为其他高级图形或者图形应用程序的基本函数库。这些系统(或者函数库)包括:XWindow、SVGALib、FrameBuffer等等。

1.1XWindow

提起Linux上的图形,许多人首先想到的是XWindow。这一系统是目前类UNIX系统中处于控制地位的桌面图形系统。无疑,XWindow作为一个图形环境是成功的,它上面运行着包括CAD建模工具和办公套件在内的大量应用程序。但必须看到的是,由于XWindow在体系接口上的原因,限制了其对游戏、多媒体的支持能力。用户在XWindow上运行VCD播放器,或者运行一些大型的三维游戏时,经常会发现同样的硬件配置,却不能获得和Windows操作系统一样的图形效果――即使使用了加速的XServer,其效果也不能令人满意。另外,大型的应用程序(比如Mozilla浏览器)在XWindow上运行时的响应能力,也相当不能令人满意。当然,这里有Linux内核在进程调度上的问题,也有XWindow的原因。

XWindow为了满足对游戏、多媒体等应用对图形加速能力的要求,提供了DGA(直接图形访问)扩展,通过该扩展,应用程序可以在全屏模式下直接访问显示卡的帧缓冲区,并能够提供对某些加速功能的支持。

1.2SVGALib

SVGALib是中最早出现的非X图形支持库。这个库从最初对标准VGA兼容芯片的支持开始,一直发展到对老式SVGA芯片的支持以及对现今流行的高级视频芯片的支持。它为用户提供了在控制台上进行图形编程的接口,使用户可以在PC兼容系统上方便地获得图形支持。但该系统有如下不足:

1)接口杂乱。SVGALib从最初的vgalib发展而来,保留了老系统的许多接口,而这些接口却不能良好地迎合新显示芯片的图形能力。

2)未能较好地隐藏硬件细节。许多操作,不能自动使用显示芯片的加速能力支持。

3)可移植性差。SVGALib目前只能运行在x86平台上,对其他平台的支持能力较差(Alpha平台除外)。

4)发展缓慢,有被其他图形库取代的可能。SVGALib作为一个老的图形支持库,目前的应用范围越来越小,尤其在Linux内核增加了FrameBuffer驱动支持之后,有逐渐被其他图形库替代的迹象。

5)对应用的支持能力较差。SVAGLib作为一个图形库,对高级图形功能的支持,比如直线和曲线等等,却不能令人满意。尽管SVGALib有许多缺点,但SVGALib经常被其他图形库用来初始化特定芯片的显示模式,并获得映射到进程地址空间的线性显示内存首地址(即帧缓冲区),而其他的接口却很少用到。另外,SVGALib中所包含的诸如键盘、鼠标和游戏杆的接口,也很少被其他应用程序所使用。

因此,SVGALib的使用越来越少,笔者也不建议用户使用这个图形库。当然,如果用户的显示卡只支持标准VGA模式,则SVGALib还是比较好的选择。

1.3 FrameBuffer

FrameBuffer 是出现在 2.2.xx 内核当中的一种驱动程序接口。这种接口将显示设备抽象为帧缓冲区。用户可以将它看成是显示内存的一个映像,将其映射到进程地址空间之后,就可以直接进行读写操作,而写操作可以立即反应在屏幕上。该驱动程序的设备文件一般是 /dev/fb0、/dev/fb1 等等。比如,假设现在的显示模式是 1024x768-8 位色,则可以通过如下的命令清空屏幕:

$ dd if=/dev/zero of=/dev/fb0 bs=1024 count=768

在应用程序中,一般通过将 FrameBuffer 设备映射到进程地址空间的方式使用,比如下面的程序就打开 /dev/fb0 设备,并通过 mmap 系统调用进行地址映射,随后用 memset 将屏幕清空(这里假设显示模式是 1024x768-8 位色模式,线性内存模式):

int fb; unsigned char* fb_mem; fb = open (“/dev/fb0”, O_RDWR); fb_mem = mmap (NULL, 1024*768, PROT_READ|PROT_WRITE,MAP_SHARED,fb,0); memset (fb_mem, 0, 1024*768);

FrameBuffer 设备还提供了若干 ioctl 命令,通过这些命令,可以获得显示设备的一些固定信息(比如显示内存大小)、与显示模式相关的可变信息(比如分辨率、象素结构、每扫描线的字节宽度),以及伪彩色模式下的调色板信息等等。

通过 FrameBuffer 设备,还可以获得当前内核所支持的加速显示卡的类型(通过固定信息得到),这种类型通常是和特定显示芯片相关的。比如目前最新的内核(2.4.9)中,就包含有对 S3、Matrox、nVidia、3Dfx 等等流行显示芯片的加速支持。在获得了加速芯片类型之后,应用程序就可以将 PCI 设备的内存I/O(memio)映射到进程的地址空间。这些 memio 一般是用来控制显示卡的寄存器,通过对这些寄存器的操作,应用程序就可以控制特定显卡的加速功能。

PCI 设备可以将自己的控制寄存器映射到物理内存空间,而后,对这些控制寄存器的访问,给变成了对物理内存的访问。因此,这些寄存器又被称为“memio”。一旦被映射到物理内存,Linux 的普通进程就可以通过 mmap 将这些内存 I/O 映射到进程地址空间,这样就可以直接访问这些寄存器了。

linux操作系统文章专题:linux操作系统详解(linux不再难懂)

linux相关文章:linux教程



上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭