年轻人猝死频发,AI应用到心血管疾患筛查还有多远?
AI的介入,一方面能实现不受人员能力影响的较高准确率,另一方面,算法不断优化的过程,也使得这种准确率可以持续提升,且可能比医生学习速度更快。上文数坤科技的解决方案目前获得了较为理想的准确率,且随着合作医院的增多,算法的自我成长让准确率也在不断提升。
本文引用地址:https://www.eepw.com.cn/article/201901/396384.htm3、推进医疗服务升级
如果最冗杂的工作被24小时不知疲倦的AI代替,医生不再陷入无尽的“片子”中,对医院而言,不论是“治病能力”,还是“服务质量”,亦或是医生们的职业认可都会有大的提升。“腾出手来”也可加大基础医学研究力度,改变只有临床经验却无更领先医学理论的境况。
总而言之,AI应用到心血管诊疗,对大众尤其是特定职业的全面预防性筛查、减少无症状心源性疾病导致的猝死风险,对减轻医生工作压力、提升效率和诊断准确性,对病患享受更好地诊断与治疗,都有积极意义。
AI心血管医学影像识别的落地,不是那么简单
AI心血管医学影像识别市场需求庞大、技术价值明显。例如,前文的数坤科技CoronaryDoc已经进入全国逾 100 家医院进行临床试用,包括武汉市中心医院、北京友谊医院、北京宣武医院、中国医学科学院阜外医院等知名医院都与数坤科技开展了各种形式的合作。
不过怪异的是,多数AI医疗公司们似乎对心血管疾病“视而不见”,这么多年市面上只找到一家企业将其作为进入AI大医疗的起步点。数坤科技对外宣称其建立了具有独占性的原创心血管AI影像平台,实现从拍片到结构化报告的诊断全流程覆盖,核心技术包括AI三维重建、血流动力学分析、手术规划和导航、智能疾病管理等。
在成立一年之内,数坤科技也已完成逾亿元的 A 轮融资,远毅资本、华盖资本、晨兴资本等知名投资基金参与,足见资本市场对心血管AI医学影像识别的看重。
这种矛盾的原因并不难理解,AI项目扎堆的肺结节领域已经拥有全球开源的数据与算法,而心血管领域的医学影像识别可以说是一穷二白,既没有启动阶段的充足数据,也缺乏可以拿来就用的现成算法,要做只能是“白手起家”。所以,数坤科技必须要原创算法模型,并且“生在医院,长在医院”。
人才也是困扰该领域的难点,各类AI国际大赛、实验室项目客观上为肺结节的现实应用输送了大量的人才,而心血管领域的AI人才体系接近空白。由此,数坤科技提前到大学锁定人才、自主培养的做法也就可以理解了。
此外,心血管影像独特的技术难点也让不少人望而却步。
相对肺结节的静态扫描图像更容易分析和合成,不断跳动的心脏让多张扫描图像的三维图像重建变得更为困难,且冠脉极端复杂的网状结构(左、右冠状动脉的分支及其终末支等复杂结构)、个案之间大不相同的病症可能(冠心病、主动脉夹层、动脉炎等),都给AI的能力提出了更为巨大的挑战。
对此,数坤科技研发出了更复杂、更大、更深的血管分割网络——其技术团队也将其命名为整体透视网络,这也是数坤科技孤注一掷研发成功的全球独有AI算法。
即便所有的困难都克服了,AI解决方案的最终准确性仍然依赖初始图像扫描质量,说白了,设备越先进、扫描操作人员的水平越高,成像质量越好,AI的分析也就更能得心应手。但是,倘若成像质量只属一般,AI也必须有从“一般”中提升准确率的能力。
2018年11月20日,数坤公司获得德勤“中国明日之星”称号,该奖项也被称为全球高成长企业的标杆。这可以说是对单个企业的认可,其实更可以说是业界对AI心血管影像识别的看好。
反过来,把目光转到数坤科技这家个体企业身上,选择从心血管领域起步AI医疗创业,路也不会那么好走。
但是,倘若最难的路首先走通了,后面进入肺结节、皮肤癌等领域做全领域AI医疗可能会更简单。
不过,这都是创业的选择问题了,对大众而言,AI心血管医学影像识别的普及越快越好。
评论