详细解析新能源汽车核心技术:电池包和BMS、VCU、 MCU
表3 MCU技术参数

3.3 电池包和BMS
电池包是新能源汽车核心能量源,为整车提供驱动电能,它主要通过金属材质的壳体包络构成电池包主体。模块化的结构设计实现了电芯的集成,通过热管理设计与仿真优化电池包热管理性能,电器部件及线束实现了控制系统对电池的安全保护及连接路径;通过BMS实现对电芯的管理,以及与整车的通讯及信息交换。
电池包组成如图5所示,包括电芯、模块、电气系统、热管理系统、箱体和BMS。BMS能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。

图5 电池包组成
BMS是电池包最关键的零部件,与VCU类似,核心部分由硬件电路、底层软件和应用层软件组成。但BMS硬件由主板(BCU)和从板(BMU)两部分组成,从版安装于模组内部,用于检测单体电压、电流和均衡控制;主板安装位置比较灵活,用于继电器控制、荷电状态值(SOC)估计和电气伤害保护等。
BMU硬件部分完成电池单体电压和温度测量,并通过高可靠性的数据传输通道与BCU 模块进行指令及数据的双向传输。BCU 可选用基于汽车功能安全架构的32 位微处理器完成总电压采集、绝缘检测、继电器驱动及状态监测等功能。
底层软件架构符合AUTOSAR标准,模块化开发容易实现扩展和移植,提高开发效率。
应用层软件是BMS的控制核心,包括电池保护、电气伤害保护、故障诊断管理、热管理、继电器控制、从板控制、均衡控制、SOC估计和通讯管理等模块,应用层软件架构如图6所示。

图6 应用层软件架构
表4为国内外主流 BMS供应商的技术参数,代表着BMS的发展动态。
表4 BMS技术参数

4 充电设施
充电设施不完善是阻碍新能源汽车市场推广的重要因素,对特斯拉成功的解决方案进行分析,并提出新能源汽车的充电解决方案、剖析充电系统组成。
4.1 特斯拉充电方案分析
特斯拉超级充电器代表了当今世界最先进的充电技术,它为MODEL S充电的速度远高于大多数充电站,表5为特斯拉电池和充电参数。
表5电池和充电参数

特斯拉具有5种充电方式,采用普通110/220V市电插座充电,30小时充满;集成的10kW充电器,10小时充满;集成的20kW充电器,5小时充满;一种快速充电器可以装在家庭墙壁或者停车场,充电时间可缩短为5小时; 45分钟能充80%的电量、且电费全免,这种快充装置仅在北美市场比较普遍。
特斯拉使用太阳能电池板遮阳棚的充电站,既可以抵消能源消耗又能够遮阳。与在加油站加油需要付费不同,经过适当配置的 MODEL S 可以在任何开放充电站免费充电。
特斯拉充电技术特点可总结如下两点:1)特斯拉充电站加入了太阳能充电技术,这一技术使充电站尽可能使用清洁能源,减少对电网的依赖,同时也减少了对电网的干扰,国内这一技术也能实现。 2)特斯拉充电时间短也不足为奇,特斯拉的充电机容量大90~120kWh,充电倍率0.8C,跟普通快充一样,并没有采用更大的充电倍率,所以不会影响电池寿命;20分钟充到40%,就能满足续航要求,主要原因是电池容量大。
4.2 充电解决方案

图7充电系统组成
图7为一种可参考的新能源汽车充电解决方案,充电系统组成:配电系统(高压配电柜、变压器、无功补偿装置和低压开关柜)、充电系统(充电柜和充电机终端)以及储能系统(储能电池与逆变器柜)。无功补偿装置解决充电系统对电网功率因数影响,充电柜内充电机一般都具备有源滤波功能、解决谐波电流和功率因数问题。储能电池和逆变器柜解决老旧配电系统无法满足充电站容量要求、并起到削峰填谷作用,在不充电时候进行储能,大容量充电且配电系统容量不足时释放所储能量进行充电。如果新建配电系统容量足够,储能电池和逆变器柜可以不选用。风力发电和光伏发电为充电系统提供清洁能源,尽量减少从电网取电。
5 总结
从消费者和技术角度分别对新能源汽车结构进行归纳分类,分析各种结构的优势,以及国内外各主机厂的应用情况。分析新能源汽车的模块组成和平台架构,详细介绍了三级模块体系中相关的执行系统和控制系统。分析VCU、MCU和BMS的结构组成及关键技术,以及世界主流供应商的技术参数和发展动态。对特斯拉成功的解决方案进行分析,并提出新能源汽车的充电解决方案。
评论