MWC 2018:人工智能成为主旋律
如果应用开发人员和OEM厂商想要利用智能手机应用处理器内部的神经引擎,他们需要一个与底层硬件挂钩的软件框架。“所有领先的移动处理器设计公司(高通、联发科、华为、苹果)现在都提供神经网络SDK,”Demler观察到。但他们都需要支持像Caffe和Torch这样的流行培训框架。
本文引用地址:https://www.eepw.com.cn/article/201803/376266.htm对联发科来说,联发科提供了被称为NeuroPilot AI SDK的框架,该框架可以让应用开发人员和OEM厂商“深入到硬件,看AI软件如何在CPU、GPU和专用AI加速器上运行”,Moynihan这样表示。
与此同时,应用开发人员和OEM厂商也需要能够“查找并查看Android网络API(Android NNAPI)的内容”,Moynihan补充道。Google为Android机器学习开发了Android NNAPI和运行时引擎。“联发科的NeuroPilot SDK完全符合Android NNAPI,”Moynihan补充道。

Android Neural Networks API的系统架构(来源:Google)
在部署能够让智能手机处理器运行AI应用的方法中,高通的方法似乎有些不同。
McGregor说,高通的解决方案是不同的,因为“他们已经在芯片上使用了多种资源,包括Hexagon DSP、Adreno GPU和Kryo CPU内核。”
然而他补充说:“没有可用的基准,不可能确定哪种方法更好,但高通模型确实提供了更高的灵活性。”
AI软件之战
无论底层硬件如何,毕竟最关键的还是能够购在任何智能手机上体现AI体验差异化的软件。
McGregor说:“现在,这些应用正瞄准着手机上的常见功能,例如拍照和数字助理。但是,通常由第三方软件开发人员来开发和训练用于手机上的这种模型。”
他指出,“在有限的情况下,有些模型或库是可用的。高通围绕图像识别开发了一些库,三星主要围绕拍照,我相信苹果也正在开发自己的模型。“
在其他情况下,这取决于应用开发人员,这是一个很大的限制,McGregor指出。“很多应用开发人员并不习惯于使用深度学习,也无法访问深度学习所需的大型数据中心,”他说。
Linley Group的Demler在他最近的微处理器报告中也对人工智能软件开发提出了警告。 “处理器架构的多样性给Android应用开发人员带来了挑战,因为即使在缺乏专用深度学习加速器的设备上,这些应用也必须能够运行。”而另一方面,iOS应用开发人员只需要支持Apple设计的一些处理器就可以了。
Tirias Research首席分析师Kevin Krewell也警告说:“我看到的最大问题是,每个芯片和IP供应商都在以不同的方式做机器学习。ARM可能有最佳的机会,在一个IP上对多个厂商实施标准化。
评论