开关电容DC/DC变换器的理论研究
2)频率调制模式(FM)
当各个串并电容组合结构的特征系数Ki均较大时,式(9)可简化为
Vo=(11)
式(11)表明,采用PWM方式,已经无法获得明显的调制效果,而采用FM方式,可以起到调制输出电压的作用,我们称之为频率调制模式。
3)过渡模式(混合调制模式)
当存在至少一个串并电容组合结构的特征系数Ki不很大,也不很小时,式(9)中的指数项不能线性化,开关电容DC/DC变换器的输出电压受到工作频率和占空比的双重影响,称之为过渡模式。
一般情况下,三种工作模式的分界线可确定如下[2]:
Ki>3时,开关电容DC/DC变换器工作在FM模式;
0.2Ki3时,开关电容DC/DC变换器工作在过渡模式;
Ki0.2时,开关电容DC/DC变换器工作在PWM模式。
4)逐压控制模式
PWM动态响应速度较慢,只适用于DC/DC变换器,而逐压控制方法具有较好的动态响应,采用同样结构的开关电容变换器,可实现DC/AC变换和构成失真小的DC/AC变换器。
现以图3的基本开关电容DC/DC变换器为例阐述其工作原理,控制电路原理图如图4所示。
图4 基本开关电容DC/DC变换器逐压控制电路原理图
变换器启动后,当输出超过Vo+Ve或振荡脉冲为负时,S12关断,S11导通;当输出低于Vo-Ve且振荡脉冲为正时,S12导通,S11关断。Vo是输出电压设计值,2Ve为允许纹波电压峰-峰值。通过振荡器提供的脉冲信号,可以保证在变换器启动初始即使Vo很低(或为零)C1也有被充电的机会,而当Vo建立起足够的电压后,通过逻辑电路封锁振荡器脉冲。这样,在启动初期,S11,S12受振荡器强制控制,以确保启动成功,稳定后振荡器不起作用,开关管完全由输出电压反馈控制。这就是逐压反馈控制的基本原理,通过这种控制方法可以使输出电压限制在所设计的动态范围之内。
5 开关电容DC/DC变换器的效率分析
5.1 基本效率分析
从能量的角度,效率η可以定义如下:
η=(12)
式中:WL和Ws分别是负载消耗和电源供给的能量;
IL和Is分别是负载电流和电源电流的平均值;
T为工作周期。
WL和Ws也可写作
WL=QLVL,Ws=QsVs
式中:QL和Qs分别是流过负载及电源流出的电量;
VL为负载电压。
于是,效率为
η= (13)
式中:M称为变换器的电压变比,M=VL/Vs;
K称为变换器的本征电压变比,K=Qs/QL。
在理想条件下,效率η可以为1,即M=K,但通常η1,即M对于图1的基本开关电容变换器,则有
QL=Qs,η=M,K=1
上式表明,无论采取什么调制方式,基本开关电容变换器的效率是其电压变比,当变比很小时,变换器的效率就很低。这并不比线性变换器好多少,但是电路却复杂得多,因而没有多大实际意义。
5.2 改善效率的方法
采用串并电容组合结构可以提高开关电容DC/DC变换器的效率。以图2的二阶串并电容组合DC/DC变换器为例进行分析。
设状态I时的充电电量为Q,状态II时的放电电量为Q′,则利用等效电量关系法可得
Qs=Q=Q11=Q12
QL=Q′=2Q11′=2Q12′
K=0.5
η=M/K=2VL/Vs(14)
式(14)表明,二阶串并电容组合开关电容变换器效率在电压变比相同的情况下,比基本开关电容变换器的效率提高了一倍。同理可以推导出n阶串并电容组合开关电容DC/DC变换器的效率为η=M/K=nVL/Vs,在电压变比相同的条件下比基本开关电容变换器的效率提高n倍,且当电压变比在本征电压变比(仅由电路结构确定)附近时可以得到较高的效率,而在其它电压变比的情况下效率仍然不高,尤其在0.5M1的范围内,由于有MK的限制,不能采用串并电容组合结构,因而采用单级的电容结构无法提高变换器的效率,而且由于二极管正向压降的影响,还会使效率更低。采用多级的串并电容组合结构可以进一步改善开关电容DC/DC变换器的效率,以图1的统一模型为例,可以推导出效率的公式为
η=M/K=M/(15)
由式(15)可知,对于各种电压变比的电压变换,只要选取适当的多级串并电容组合结构,均可获得较高的效率。例如,对于+5V/+12V的升压变换,当n1=1,n2=1,n3=2时即可获得接近90%的效率。
6 结语
近年来,开关电容DC/DC变换器获得了较大的发展,各种新型拓扑和控制方法层出不穷,开关电容DC/DC变换技术也逐渐走向成熟,由于受到电容器制造技术的限制,这种变换器只适合于小功率的电压变换。随着科学技术的不断进步,在不久的将来,开关电容DC/DC变换器必将在诸如航空航天电器、医疗仪器、机器人、通信设备、便携式电脑等领域获得广泛的应用。
评论