单级高功率因数调光式荧光灯电子镇流器设计
(b) f=70kHz,D=0.45
(c) f=75kHz,D=0.45
图3不 同 频 率 下 灯 电 压 、 灯 电 流 仿 真 波 形
3 设计与验证
3.1 主电路拓扑
主电路拓扑结构如图4所示。
电子镇流器的主电路由PFC电路和谐振电路两部分组成。考虑到两级结构的成本过高,因此将两级中的功率开关管共用变成单级结构。图4所示主电路拓扑就是将Buck-Boost型PFC电路与并联负载串联谐振电路合成在一起,灯模型采用前面所提到的模型。
图4 调 光 式 荧 光 灯 电 子 镇 流 器 主 电 路 拓 扑
3.2 理论设计
对于上述拓扑,功率因数校正级电感Lo是和频率有关的量,那么调光时,随着频率的升高,电感电流可能要连续,这样会影响功率因数校正的效果,灯上电压、电流也会发生畸变,从而限制了调光范围。因此,它的参数选择至关重要[3]。首先,由于电感电流工作于DCM状态,电感电流的峰值iin(peak)(t)正比于线电压,所以它在半个工频周期(T/2)内为
iin(peak)(t)= (1)
(0t )
式中:VI为电网电压的幅值;
ω(=2π/T)为电网电压的角频率;
fs为开关频率,它大大高于电网电压频率;
D为开关的占空比。
而电感电流的平均值iin(m)(t)为
iin(m)(t)==
(2)
从上式可以看出电感电流的峰值是呈正弦变化的,因此能实现功率因数校正。假设Buck-Boost变换器的效率是100%,功率因数是“1”,一个工频周期内输入功率因数校正级的平均功率为Pi为
Pi==
=
(3)
式(3)表明输入功率Pi在Lo恒定的情况下可以通过改变占空比和频率来控制,如果输入功率等于灯驱动级的功率,电压Vco能够保持恒定。相反,如果输入功率大于灯吸收的功率,则Vco将无限制地增长,造成器件损坏。
所以,应尽量使两者相等,而输出到灯上的功率Po为
Po= (4)
电子镇流器相关文章:电子镇流器工作原理
评论