新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 两种优化开关模式在高频SVPWM逆变电源中的应用

两种优化开关模式在高频SVPWM逆变电源中的应用

作者: 时间:2011-02-22 来源:网络 收藏

本文引用地址:https://www.eepw.com.cn/article/179682.htm

(a) 模式1

(b) 模式2

图3 两种对称的优化开关模式

(a) 模式1

(b) 模式2

图4 两种不对称的优化开关模式

2 高频SVPWM逆变器的设计

2.1 硬件设计

高频逆变电源要求控制器能够在最短的时间内,完成全部控制运算。对各种单片机和DSP的性能进行比较筛选后,本文设计的逆变器数控系统采用TI公司DSP24x系列的最新成员TMS320LF2407A。该芯片具有同类DSP中最优越的一些性能,只需一片TMS320LF2407A即可实现高频SVPWM逆变电源数字控制系统的设计。在TMS320LF2407A时钟输入引脚上接20MHz晶振,后经内部锁相环倍频后得40MHz时钟频率,这样指令执行周期可缩为25ns,较C240DSP速度整整提高了1倍。另外,TMS320LF2407A还具有外部集成度更高,程序存储器更大,A/D转换速度更快的特点,且其独特的空间矢量PWM波形产生电路,更为完成高频SVPWM算法提供了方便,同时可使数字控制系统最小化。

对于输出频率为1000Hz的逆变器,开关频率至少要在20kHz以上,但是开关频率过高又会给DSP的运算及A/D转换带来压力。另外,死区时间在理想脉宽中所占的比例过大,对调制线性度也会造成不良影响,经权衡,本系统控制周期取为23.8μs,这样采用优化模式1时的开关频率为6的倍数42kHz,而采用优化模式2,开关频率仅为28kHz。普通的IGBT已经无法承受这么高的开关频率,所以,逆变器主电路采用分立MOSFET(IRFPC60)组成的三相桥式电路结构。为实现高频信号驱动,和最大地简化电路,硬件设计中除了采用贴片式DSP外,还采用IR公司的高压浮动MOS栅极驱动芯片IR2130。

图5为逆变器系统示意图。实际工作时,DSP在每个控制周期中经A/D采样频率给定信号后,根据V/F控制原理和改进的SVPWM算法,选择优化开关模式,来产生6路PWM信号,经高速光耦隔离后送IR2130驱动6个MOS管来带动一个三相感性负载工作。

图5 逆变器系统示意图

IR2130为单电源+15V工作;可直接驱动600V高压系统;自带硬件死区和欠压锁定功能与过流保护功能;通过外围自举电路,可同时驱动3个桥臂的6个MOS管。注意到采用图3所示优化开关模式2时,生成的PWM波中会出现一段长时间导通或关断的脉冲信号,这就要求IR2130的自举电容能够提供足够大的驱动电荷,否则,将无法驱动高端MOS管。自举电容所需的最小电容值,可由式(5)计算。

C≥牛5)

式中:Qg为高端器件栅极电荷;

f为工作频率;

Iqbs(max)为高端驱动电路最大静态电流;

Icbs(leak)为自举电容漏电流;

Qls为每个周期内,电平转换电路中的电荷要求;

Vcc为芯片供电电压;

Vf为自举二极管正向压降;

Vls为低端器件压降或高端负载压降。

经计算并取安全余量后,采用4.7μF的CBB电容作为自举电容。

电路设计中考虑高频逆变器的安全运行,还通过DSP的信号采集,进行过、欠压,过流,过温等保护电路的设计。

硬件系统采用TOPSwitch反激式电源,分别为控制电路,驱动电路,保护电路提供+5V,±15V等5路相互隔离的辅助电源。



关键词:

评论


相关推荐

技术专区

关闭