具有多个电压轨的FPGA和DSP电源设计实例
实现电源轨的受控单调上升
最后推荐的电源设计方案是在启动时单调上升,在图4的上图所示。
![]() |
大容量电容的容量过大将迫使POL转换器在启动期间进入电流限制,进而可能使转换器反复进出热停机状态而永远不会达到期望的稳压输出。对快速启动型线性稳压器而言,一个很常见的启动问题是,如果输入电源在启动时电压下降,在输入电容重新充电之前将暂时激活该稳压器的欠压锁定(UVLO)。这引起该调解器重复地短时停机然后恢复,导致输出电压振荡并最终锯齿状上升到终值电压。图5显示了由一个样板电源供电的快速启动型线性稳压器的例子,输入电源的电压下降,激活UVLO并停机,该过程重复进行,最终达到期望的稳压输出。
只有少数线性稳压器带有可以控制启动过程的软启动功能。在启动时,除非进入热限制或输入轨电压被拉下来,这些稳压器向输出电容提供最高到其电流限定值的充电电流(如图5所示)。不管是内部固定的还是外部可调的,所有的开关转换器都带有某种软启动。把跟在直流/直流转换器之后的FET用作电流限制开关可以实现软启动。图6和图7显示了此类应用的一个实例和软启动的结果。
线性稳压器和开关转换器实现软启动的常用方案有两种,即参考电压控制或电流限制控制。在这两种方案中,都使用一个小的外部电容(在皮法到1μF的范围)来控制软启动定时。电压控制的软启动通常通过慢慢提升参考电压来实现。因为反馈环迫使该转换器提供足够的电流使输出电压跟随参考电压,输出电压提升的速度(dv/dt)正比于在软启动期间提供参考电压的启动电容。设定输出电压的上升速度所需要的外部电容值由一个简单的定时方程来决定。假设突入电流(inrush current)由充电大容量电容CBulk决定,突入电流将是固定的(i = CBulk ??dv/dt),如图4所示。让两个这类软启动共享同一个的软启动电容可以实现在本系列论文第一部分所讨论的比率(ratiometric)排序。
![]() |
当使用电流限制控制的软启动时,转换器缓慢地或以步进方式把电流限制提升到最大值。此时,该转换器看起来像一个电流源,把一个慢慢提高的电流提供给负载。由于电压反馈环仍然试图提供期望的输出电压,所以该转换器将提供电流限制和各种热保护所允许的最大电流。输出电压的提升速率(dv/dt)是输出电压的绝对数值(即一个1.2V轨将比3.3V轨提升的更快)、该轨上的阻性和容性装载以及该转换器的电流限制设定值的函数。
![]() |
评论