新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 稳压电荷泵和电感式DC/DC转换器的比较

稳压电荷泵和电感式DC/DC转换器的比较

作者: 时间:2013-03-27 来源:网络 收藏

因此升压转换器的输出电压始终高于输入电压,因为1/(1 - D) 始终大于1。图5给出了升压稳压器的结构。

升压稳压器的结构

因此,对于需要稳压输出电压既可高于输入电压又可低于输入电压的应用,降压或升压稳压器都不太合适。

单端初级电感式转换器(SEPIC)

另一种应用日益广泛的电感式DC/DC转换器是SEPIC结构。其特点是输出的稳压电压既能够高于输入电压,也可以低于输入电压。

如图6所示,SEPIC与传统降压转换器和升压转换器的区别在于,采用两个外部电感(L1和L2)以及两个外部电容(CP 和 COUT)。SEPIC电源的工作也包括两个阶段,但对其工作方式的讨论不是非常广泛,因为相对更为复杂,而其应用也是近期才流行起来。

SEPIC与传统降压转换器和升压转换器的区别

同样,为简化分析,我们考察一个L1 和 L2都工作在连续电流模式的固定频率SEPIC稳压器。

为理解SEPIC稳压器的工作,我们首先从平衡状态开始,这时开关都是关断的。没有直流电流通过CP。CP端的电压(从左到右)是VIN,其左侧通过L1连接到VIN,右侧通过L2连接到地。

在开关导通阶段,L1右侧连接到地,VIN就是其两端的电压。CP左侧电平转接到地,由于CP两端的电压是VIN,因此CP右侧的电压是−VIN。L2的下端接地,同时与CP并联,因此其上端电压为−VIN。二极管D1现在是反向偏置,因此没有电流通过。

在此阶段,L1由VIN充电, L2由CP进行充电。由于D1是反向偏置的,两个电感都不对COUT进行充电或为负载供电。负载电流由COUT提供。因此,两个电感的电流都以线性方式上升,在开关导通阶段的开始初始值为iL1和iL2, 在开关导通阶段结束时的最终值分别为iH1和iH2 (参考图6)。

电感两端电压与通过电感的电流之间的关系为:

V=L(di/dt) 方程(3)

从公式3推导出,在开关导通阶段电感L1和L2的电压-电流关系如下:

iH1-iL1=(VIN-0)tON/L1=VINtON/L1 方程(4a)

iH2-iL2=(0-(-VIN))tON/L2=VINtON/L2 方程(4b)

在开关导通阶段,由于通过L1的电流不能瞬时变化,因此同样的电流流出L1的右侧,迫使L1右侧电平从地上升到高于VIN。这同时将CP左侧的电平移至高于VIN,从而导致电流从其右侧流出,使D1处于正向偏置。这样CP右侧的电压,即L2上端的电压,也等于VOUT(忽略二极管的小压降)。此外,我们已经确定 CP 两端(从左到右)的电压为VIN,因此 CP 和 L1 之间结点的电压现在为VIN+VOUT。

来自L1和L2电感的电流现在开始对 COUT 充电并为负载提供电流。因此,两个电感的电流都以线性方式下降,在开关断开阶段的开始初始值为 iH1和iH2, 在开关断开阶段结束时的最终值分别为iL1和iL2(参考图6)。

在开关断开阶段,L1和L2电感上的电压-电流关系为:

iL1-iH1=(VIN-(VIN+VOUT))(T-tON)/L1=-VOUT(T-tON)/L1 方程(5a)

iL2-iH2=(0-VOUT)(T-tON)/L2=-VOUT(T-tON)/L2 方程(5b)

从方程4a和5a,或方程4b和5b, 可以导出VOUT:

VOUT=VINtON/(T-tON) 方程(6a)

方程6a还可以表示为:

VOUT=VIND/(1-D) 方程(6b)

其中D为占空比,等于tON/T。

从方程6a 和 6b,我们可以看出,SEPIC稳压器的输出电压既可以高于输入电压,也可以低于输入电压,因为D/(1 -D)的值既可大于1,也可小于1。

比较

稳压电荷泵转换器和SEPIC稳压转换器都可以输出高于或低于输入电压的稳压电压。对于成本敏感和避免设计复杂性的应用来说,稳压电荷泵比SEPIC稳压器更为适用。

稳压电荷泵解决方案不需要电感,因此比基于SEPIC的解决方案更为简单。因此,与SEPIC稳压器相比,稳压电荷泵转换器解决方案在设计上更简单,外形尺寸更小,成本更低。

另一方面,SEPIC稳压器能够在所有负载电压和电流状态下提供较高的效率,因此对于具有这种需求的场合是更合适的选择。此外,作为基于电感的DC/DC拓扑结构,SEPIC稳压器能够比稳压电荷泵转换器输出更大的电流。

比较

结论

稳压电荷泵式和电感式DC/DC转换器(包括降压、升压以及SEPIC稳压器)之间的比较可总结如下:

•稳压电荷泵式解决方案通常设计更简单、尺寸较小、成本更低。

•在许多情况下,SEPIC稳压转换器效率较高,并且可以输出较大电流。

因此设计工程师应当根据系统要求和设计要求进行折衷,选择最适合的电源转换器拓扑结构。


上一页 1 2 下一页

关键词:

评论


相关推荐

技术专区

关闭