新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > 有源滤波器中的相位关系考察

有源滤波器中的相位关系考察

作者: 时间:2011-06-03 来源:网络 收藏

  请记住,这些图中的频率值是归一化的,即相对于中心频率的比值。例如,若中心频率是5kHz,则这些图将展示50Hz到500kHz范围内的响应特性。

  图 7示出另外一种结构。该电路增加了一个并联电阻,对积分电容进行连续放电,从根本上来说它是一个有损耗的积分器。其中心频率同样是1/(2πRC)。因为 该放大器是以反相模式工作的,故反相模式将在相移特性上引入附加的180°。图2示出了输入-输出的差随频率的变化,其中包括了放大器引入的反相 (右轴)。该响应特性将被称为反相的、一阶、低通响应。

  

  图7. 利用工作在反相模式的运放搭建的、单极点、低通

  上面所示的电路可以衰减高频分量而通过低频分量,均属于低通。可以通过高频分量的电路则与之类似。图8示出一个无源的一阶、高通电路结构,其相位随着归一化频率的变化特性则示于图3中(同相响应)。

  

  图8. 无源高通滤波器

  图3(左轴)的曲线被称为同相、一阶、高通响应特性。该高通滤波器的电路示于图9中。其相位随频率的变化示于图3中(右轴)。这将被称为反相、一阶、高通响应。

  

  图9. 、单极点、高通滤波器二阶滤波器段

  二阶滤波器有各式各样的电路结构。这里要讨论的是Sallen-Key、多路反馈、状态变量结构,及其类似的双二阶滤波结构。它们是最常见的结构,而且与本文的内容相关。关于各种不同结构的更为完整的信息可参见文后的参考文献。

  Sallen-Key低通滤波器

  广 泛使用的Sallen-Key结构也被称为电压控制电压源(VCVS)型,是MIT的林肯实验室(参见文献3)的R.P. Sallen和 E.L. Key于1955年提出的结构。图10示出了一个Sallen-Key二阶低通滤波器的电路原理图。这一结构受到广泛欢迎的一个原因是它的性能基本与运放 的性能无关,因为放大器主要作为一个缓冲器来使用。由于在基本的Sallen-Key电路中,连接成跟随器的运放并不用于产生电压增益,故对它的增益-带 宽要求并不重要。这意味着,对于给定的运放带宽而言,与运放的动态特性受到可变反馈环路特性影响的那些电路结构相比,利用这一固定的(单位)增益可以设计 出频率更高的滤波器。通过滤波器后,信号的相位保持不变(同相结构)。图4示出一个Q=0.707(或者,阻尼比α=1/Q=1.414—— Butterworth响应特性)的Sallen-Key低通滤波器的相移-频率图。为了简化比较,这将作为下面所考虑的二阶滤波器段的性能标准。

  

  图10. 2极点、Sallen-Key低通滤波器

  Sallen-Key高通滤波器

  通过互换决定频率网络上的电容和电阻的位置,可将Sallan-Key低通电路变换为高通结构,正如图11所示的那样,而且同样采用单位增益的缓冲器。其相移-频率示于图5中(左轴)。这是同相、二阶、高通响应。

  

  图11. 2极点、Sallen-Key高通滤波器

  Sallen-Key滤波器的放大器增益可以通过在运放反相输入上连接一个电阻衰减器组成的反馈网络来提高。不过,改变增益将影响到决定频率网络的表达式,而且需要重新计算元件的值。该放大器的动态特性也需要更严格的,因为它们在环路中引入了增益。

  多路反馈(Multiple-Feedback,MFB)低通滤波器

  多 路反馈滤波器是一种单放大器电路结构,反馈环路是基于运放的积分器(反相配置),如图12所示。因此,运放参数对传递函数之间的影响要大于 Sallen-Key的实现方案。要产生一个高Q、高频电路是很困难的,因为运放在高频段的开环增益有限。一条指导方针是,运放的开环增益应该至少比谐振 (或者截止)频率处的幅值响应高出20dB(即10倍于之),包括滤波器的Q值造成的峰值。由于Q值而造成的尖峰将具有如下的幅值

  

(5)

  式中:H是电路的增益。

  

  图12. 2极点、多路反馈(MFB)、低通滤波器

  该 多路反馈滤波器会使信号反相。这等价于让滤波器自身的相移增加了180°。图4示出了相位-频率变化(右轴)。这将被称为反相、二阶、低通响应。值得 注意的是,在得到给定响应特性的条件下,多路反馈结构中的最大和最小元件值之间的差异要大于Sallen-Key实现方案中的。

  多路反馈(MFB)、高通滤波器

  上面关于多路反馈、低通滤波器的评述也适用于高通的情形。图13示出一个多路反馈、高通滤波器的原理图,其理想的相移-滤波特性则示于图5中(右轴)。这被称为反相、二阶、高通响应特性。

  

  图13. 2极点、多路反馈(MFB)高通滤波器

  要保证这种滤波器的具体电路实现在高频情况下的稳定性是十分困难的,因为它是在一个微分器的基础上构建的,与所有的微分器电路所类似的是,它在更高的频率上闭环增益更大,因此会对噪声产生放大作用。

  状态变量型滤波器

  图14示出了一种状态变量实现方案。该结构是最灵活和最精确的实现方案,付出的代价是电路元件的数量大大增加,其中包括了3个运放。所有3个主要的参数(增益、Q和ω0)都可以独立调节,而且可以同时提供低通、高通和带通输出。该滤波器的增益也是独立的变量。

  由于状态变量滤波器的所有参数都可以独立调节,故其元件值的散布变得很小。而且由于温度和元件公差所带来的失配也可以最小化。与上面的多路反馈电路类似的是,积分器部分所使用的运放的增益带宽积也成为电路的限制条件。

  

  图14. 2极点、状态变量滤波器



评论


相关推荐

技术专区

关闭