基于DSP的稳定平台设计
2 控制系统硬件设计
考虑到稳定平台系统对数据处理方面的严格要求,核心微处理器选择TI公司的TMS320F28335数字信号处理器。TMS320F28335是TI公司到目前为止用于数字控制领域最好的DSP芯片,它具有浮点运算、集成度高、片上资源丰富、运算速度快等特点。平台系统硬件架构如图2所示。本文引用地址:https://www.eepw.com.cn/article/149689.htm
姿态测量系统采用三陀螺、三加速度计组合的方式,通过SPI接口与高速DSP处理器TMS320F28335相连接,用于在两者之间传输数字信息。其中共有4线相连,分别为:串行时钟线SCLK、主机输入/从机输出数据线MISO、主机输出/从机输人数据线MOSI和低电平有效的从机选择线SS。SPI为全双工通信,具有传输速率快,简单高效等优点。三陀螺、三加速度计均采用3.3 V电压供电,由系统电源提供。系统时钟采用30 MHz的外部晶体给CPU提供时钟,并通过使能片上PLL电路及控制寄存器的修改得到所需的时钟频率。
伺服控制系统采用TMS320F28335作为核心控制器。F28335有12个增强型脉宽调制模块,通过增强型脉宽调制模块ePWM的使用,从而将姿态测量系统测得的具体姿态角信息转换为不同占空比的方波。由于同时存在横滚角及俯仰角姿态信息,必须建立横滚伺服控制系统、俯仰伺服控制系统。横滚及俯仰方向上的方波经PWM功率放大器放大后,分别转换为横摇驱动驱动及纵摇驱动。两路驱动可采用不同频率的方波,控制伺服电机产生不同的转速,在一定时间内,将姿态角信息转换为滚珠丝杠相应的转动,从而达到平台稳定的目的。
3 系统软件设计
由于稳定平台采用并联方式驱动,因此结构在横摇、纵摇两个系统上采用并发执行的方式。对于简单多任务系统的稳定控制,可采用嵌入式操作系统μC/OS-Ⅱ对系统多任务进行管理和调度,以满足并发控制的要求。
3.1 μC/OS-Ⅱ
在嵌入式操作系统领域,μC/OS-Ⅱ以其源代码开放、研究免费、强实时性等特点被广泛应用。它是一种基于优先级的硬实时可剥夺型多任务内核,在多任务管理上表现卓越,而且在可移植性、裁剪等方面也具有优越的性能。已有成千上万的开发者把它成功地应用于各种系统,安全性和稳定性也已经得到认证,现已经通过美国FAA认证。因此将μC/OS-Ⅱ应用于多任务管理的稳定平台系统是非常合适的。
3.2 多任务管理
稳定平台系统主要执行以下任务:DSP硬件初始化、姿态测量、姿态数据处理、自适应PID解算、ePWM模块、横摇驱动和纵摇驱动。在μC/OS-Ⅱ操作系统管理下,任务管理分为:DSP硬件初始化、μC/OS-Ⅱ系统初始化、定时中断、横摇调整和纵摇调整。
操作系统第一步执行DSP硬件的初始化工作,包括设置系统的中断向量、初始化数字I/O、串行通信接口SPI、定时器模块等。完成后将开始操作系统的初始化,通过调用OSIint()完成操作系统的配置及数据的初始化。接着通过调用任务创建函数OSTaskCreat()函数,依次创建定时中断、横摇调整和纵摇调整3个任务。调用OSStart()最终启动多任务运行。
各任务优先级设定从高到低依次为:横摇调整、纵摇调整、定时中断,各任务间通过消息邮箱机制来实现各个任务间的同步。开始运行时,通过DSP定时器每50 ms一个周期的定时中断,使得定时中断任务就绪运行,该任务通过消息邮箱机制使得横摇调整及纵摇调整任务处于就绪态,并同时挂起等待下一个定时中断。横摇调整及纵摇调整主要完成的工作有姿态测量、姿态数据处理、自适应PID解算、ePWM模块、横摇驱动和纵摇驱动。横摇调整同纵摇调整相似,最后控制的相应驱动分别为横摇驱动、纵摇驱动。其中纵摇调整任务流程如图3所示:
伺服电机相关文章:伺服电机工作原理
加速度计相关文章:加速度计原理
评论