新闻中心

EEPW首页 > 嵌入式系统 > 市场分析 > 20年后我们可能不会再提到CPU

20年后我们可能不会再提到CPU

作者:时间:2009-12-15来源:南方都市报收藏

  在当时使用的测试程序中,小组使用了Intel C++编译器来优化超线程和SSE指令,并且以上的运行能够完成16和32位浮点运算。2005年,小组成员们便对几块A TIX800 XT和NVIDIA GeForce 6800G PU进行测试,产生的结果与一台3.4 GHz Pentium IV PC产生的结果进行比较发现,性能非常优秀。

本文引用地址:http://www.eepw.com.cn/article/101266.htm

  2008年,NVIDIA公司Tesla计算事业部总经理Andy Keane表示,到2010年,采用NVIDIATesla 构建的超级计算机,有望进入全球高性能计算机TO P500排行榜的前十位。

  他当时谈到,10系列G PU是首批拥有双精度的NVIDIA处理器。随着快速发展,未来G PU的性能一般每年都会翻一番,未来双精度性能将至少比当前的速度快5倍。

  除了性能提升,成本、功耗、占地面积也是大规模超级计算机用户所关心的重要因素。

  如比利时安特卫普大学原来用的超级计算机有512颗处理器核,成本是530万美元,占用了好几个机柜;而后来换成一台拥有8个G PU的台式系统,性能相当,成本只需7000美元,占地面积也大为减少。

  人脑、电脑相互“促进”

  据了解,在2008年11月公布的最新一期TOP 500排行榜上,NVIDIA Tesla的最好成绩是第29位。这套名为“TSUBAME”的系统由NEC和SUN公司联合研制,采用了“+”的混合架构,包括3万多颗 Opteron和英特尔Xeon处理器内核,以及170台T eslaS1070 1U服务器,安装在日本东京工业大学,Linpack测试性能是77.48万亿次每秒(TFlops),理论峰值接近170万亿次每秒。

  此前,东京工业大学全球科技信息和计算中心主任SatoshiMatsuoka曾表示,东京工大一直在研究未来的计算平台,发现要想实现下一步的性能跨越,必须采用G PU计算技术。“我们的应用测试发现,Tesla 提供了我们前所未见的加速比,而且只花了一周时间就把GPU系统部署完成。”

  今年年中,NVIDIA CEO黄仁勋更表示,2009年是GPU引爆年,GPU可以让WIN7较XP在一些应用中有5-10倍的提升。DirectXA PI可以提供一个很酷的效果,2009年+GPU运算开启个人运算新时代。

  “GPU运算时代已经来临,这需要大家共襄盛举。”这席话是黄仁勋在NVIDIA与微软携手,在WIN7最新操作系统取得密切合作的背景下公之于众的,从民用市场的角度揭示了GPU的高速发展。

  在GPU技术高速发展的背景下,正如前面所说的,研究团队希望藉由这项研究能够创造出仿真大脑视觉辨识的人工智能。而随着他们将软件开发日益完善,越接近人类大脑辨识的结果时,又可以反过来更加了解大脑的运作模式,同时也能让电脑运作得更像大脑。

  视点:未来你的家用电脑,有望实现人脑功能

  一直以来,游戏是NVIDIA GPU的强项,“我们将来还会继续在游戏上投入巨大精力。更重要的是,它还能够推动计算机行业的创新,因为我们可以将游戏领域所积累的经验应用到全新领域中来。”NVIDIA方面如是说。

  这无疑使得家用电脑未来也有机会向人脑“靠拢”埋下了伏笔。

  不过从目前的技术演进来看,虽然已经确定了方向,但还要经过相当长的过程。此前, (ATU)用自己的最高端核心架构RV 770与人类的大脑展开了一场对比。结果显示,RV 770的计算能力和存储带宽分别为1TeraOps(每秒一万亿次操作)和1Tb/s,而人脑则为100TeraOps和10Eb/s,比RV 770高出100倍和10000倍。能量消耗上,单核心RV770需要150W,但人脑只需30W,这样看来,人脑高性能和高效率是RV 770的400多倍。

p2p机相关文章:p2p原理




关键词: AMD CPU GPU

评论


相关推荐

拓墣产业研究院的数据显示前十大fabless芯片企业之中,增速第二名为NVIDIA,NVIDIA依靠它在GPU方面的领先优势获得AI企业的欢迎,其同比增速为39.6%。AMD、NVIDIA分别位居fabless芯片企业增速前两名。

技术专区

关闭