新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 在功率因数校正 (PFC) 预调节器中使用升压跟随器的好处

在功率因数校正 (PFC) 预调节器中使用升压跟随器的好处

——
作者:时间:2007-12-12来源:收藏

  传统上,()离线的设计带有两个功率级:第一个功率级通常情况下是一个升压转换器,因为此拓扑结构中有连续的输入电流,可使用乘法器以及平均电流模式控制进行改变,以获得近乎一致的功率因数 (PF)。不过,升压转换器要求有比输入更高的输出电压,同时要求一个额外的转换器将电压步降到可用水平(见图 1)。

  

两功率级转换器的功能结构图

  图 1 两功率级转换器的功能结构图

  传统的升压转换器有一个固定的输出电压,比最大的峰值线电压要高。尽管如此,我们也不必对它进行调节,因为步降转换器(2 功率级)可对变量进行调节。只要压升超过峰值输入电压,转换器就会进行适当调节。使用升压跟随器对线电压的变化进行跟踪响应有着许多好处,比如缩小的升压电感器尺寸,以及在峰值线电压较低时更低的开关损耗。

  

升压跟随器和传统 PFC 预调节器的输出电压如何对 Vin(t) 进行跟踪

  图 2 升压跟随器和传统 预调节器的输出电压如何对 Vin(t) 进行跟踪

  升压电感 (L)

  对升压电感的选择是根据最低峰值线电压为 (Vin(min) 、占空比 (D) 为最大时所允许的最大纹波电流 (ΔI) 而定的。以下方程用于计算每一类(传统或跟随器型)预调节器功率级中的电感。ΔI 为峰值输入电流的 20%[5];Pout 为最大输出功率;而 Vout (min) 则为最小升压输出电压。这些方程表明,在输入电压范围较大时,升压跟随器拓扑结构中的电感会小很多。

  

公式

  例如,若要在具有 85V~265V 宽泛输入范围的 250W 应用中,跟踪输入电压的输出电压范围为 206V~390V 时,使用上述的方程对升压跟随器拓扑的电感进行计算,将需要 570 μH 的电感。同样的条件下,对传统的 390V 固定直流输出拓扑而言,则需要 1mH 的电感。

{{分页}}

  升压开关损耗

  以下方程计算了升压 FET 中的功率损耗 (PQ1) [3][5],并表明相对于传统 而言,当线电压较低时,寄生 FET 的电容损耗 (PCOSS) 以及 FET 的转换损耗 (PFET_TR) 在升压跟随器 PFC 中会小很多。这是因为线电压较低时输出电压 (Vout(min)) 在升压跟随器 PFC 中会小很多,从而减少了整体的开关损耗。

  

公式

  例如,一款 IP450 HEXFET(同样的条件应用于升压电感)的功率损耗在升压跟随器中为 11.5W,而在传统的调节器中的功率损耗则为 19.5W,也就是说在线电压较低时,升压跟随器的效率高出大约 3%。

  

升压跟随器型 PFC 与传统 PFC 的实验室结果比较

  图 3 升压跟随器型 PFC 与传统 PFC 的实验室结果比较

{{分页}}

  升压 FET 散热片尺寸的缩小

  升压 FET 散热片尺寸的计算在输入电压最低时进行,因为此时 FET 功率损耗最高。以下方程可用于计算传统或跟随器型要求的散热片 (Rθsa) 的最小热阻。其中,Tjmax 为最高的结温,Tamb 为最高的环境温度,Rθjc 为半导体接面至外壳的热阻,而 Rθsc 则为散热片到外壳的热阻抗。

  

公式

  通过该方程我们可以看到,由于 FET 功率损耗 (P_semi) 减少并且热阻抗上升,因此要求的散热片尺寸缩小——这是升压跟随器相对传统拓扑的又一好处。通过升压开关损耗部分已计算得出的功率损耗,我们可以选择升压跟随器和传统 PFC 预调节器的散热片,以更明显地看到升压跟随器的这一优点。对传统拓扑或跟随器型拓扑的设计要求是 Tjmax 不能超过 FET 最大额定温度的 75%,而 Tamb 则通过线性速度为 150 英尺/分的风扇维持在 40



评论


相关推荐

技术专区

关闭