新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 纯电动汽车延长续航距离的关键是什么?

纯电动汽车延长续航距离的关键是什么?

作者:时间:2014-02-20来源:网络收藏

(EV)用起来到底怎么样?”

应该有很多读者都有这种疑问。

EV与汽油车相比运行成本低,不排放破坏环境的有害物质(二氧化碳和氮氧化物),作为汽车的未来形态频繁成为热门话题。另外,发生灾害时还能当电源使用,所以在东日本大地震后关注度进一步升高。

但如果被人问“想买吗?”,则很难点头。目前在街上EV也确实还不多见。

消费者犹豫要不要买的主要原因应该是充电一次可行驶的太短。例如,2013年8月日产汽车官网上记载的EV“LEAF”(中国名:聆风)的官方(JC08模式)为228km。比过去大幅延长,理想的情况下能在东京-宇都宫间往返。

另外,还存在充电基础设施的问题。电池没电了怎么办?而且使用期间充电电池还会劣化。不消除这些担忧,EV就难以普及。

笔者前不久碰巧乘坐了一次EV出租车。庆幸之余,笔者问出租车司机,“怎么样啊?”。“啊,冷天电池消耗尤其快。暖气好像很费电”。

这个回答有点令笔者意外。EV提高燃效的关键在于暖气。自19世纪后半期发明汽车后,100多年来一直是通过发动机这一内燃机构燃烧燃料,把燃烧获得的能量转换成动力来驱动汽车。

为了不让发动机过热,会边通过冷却装置冷却边行驶,因此我们一直含糊地认为“热”是个障碍。但在EV时代,“热”则变得非常宝贵。笔者重新认识了这一点。

随着EV时代的到来,有一项技术被重点提出。那就是蓄热技术。虽然作为驱动源的充电电池也发热,但与发动机的发热相比并不大。现在车内暖气使用的发动机余热的丧失,意味着冬天提高EV需要其他的新热源。实现这一点的要素技术之一就是蓄热技术。

行业的目标值是1000kJ/kg

冬天为了使车内保持一定的温度,EV的用电量容易增大。因为外部空气与车内的温差有可能比夏天还大。

例如,室外温度零下时,要想使车内温度保持在20℃左右,温差就超过了20℃。当然,夏天的冷气也消耗电力,但假如在室外温度为35℃时把车内温度设定为25℃,其温差也只有10℃。为了冬天不过度消耗充电电池中存储的电力,确保新的热源也是不可或缺的重要技术。因此,众多汽车厂商对新蓄热技术的出现给予了热切关注。

如果能开发出具备高蓄热特性的新技术,其涉及的应用领域不仅仅是EV。以家庭和办公室等使用夜间电力的冷暖气系统为首,有望广泛用作社会整体的能源对策。

表示蓄热技术特性的指标之一是蓄热密度,是指1kg材料能存储多少热量,单位为“kJ/kg”。

为将来用于EV,作为汽车相关行业研发目标之一的蓄热密度为低温区(0~100℃)“1000kJ/kg”。当然,使用大量蓄热材料(介质)就能大量蓄热,但配备于汽车的话,最好能以尽量小的重量和体积大量蓄热。因此,作为未来目标,提出了1000kJ/kg的目标值。当然,这并不是能立即实现的值,“1000”这个数字只是目前的挑战目标。

那么,这个数值究竟是什么水平呢?以最常见的蓄热材料(介质)“水(H2O)”为例,我们在小学的自然科学课上学习过,“世界上升降温最慢的物质就是水”。实际上,无论是冬天使用的“热水袋”,还是利用夜间电力的“冰蓄冷”,都利用了水作为蓄热材料的效果。水的蓄热密度在低温区约为340~400kJ/kg。由此可知,实现1000kJ/kg需要使用蓄热密度约为水的3倍的材料。

能以较轻的重量存储大热能的作用非常大。这与充电电池同理。如果能在较轻的重量中高效蓄热,就有望用于有重量限制的汽车和飞机等。从身边的例子来看,有停电后仍可使用的冰箱、保暖性出色的住宅、能长久保温的暖瓶以及带制冷剂的饭盒等,应用范围非常广。

实现目标的两条路

通过轻松局部蓄热,例如组合使用家用空调和蓄热材料,利用夜间电力蓄热的话,有望大幅节电,而且有助于耗电量的平均化。利用夜间电力制冰或烧水,用于白天的冷气和暖气的技术已经实现实用化。据估算,如果热泵蓄热中心利用夜间蓄热,能把白天的最大用电量削减2成。

工业用途的蓄热材料大多利用潜热蓄热材料。潜热蓄热材料是指,从液体变为固体,或从固体变为液体时,能存储或释放热能的物质。

例如,把满满一桶水放在零下30℃的温度下,水会逐渐结冰。但在完全冻住之前,桶中的水温为0℃。也就是说,水会持续释放0℃的热能。反之,把满满一桶冰放在零上30℃的温度下,在冰完全融化之前,桶内的水温也保持在0℃。水处于持续吸热(蓄热)的状态。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭