新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 利用DC-DC开关电容稳压器提升便携设备电源效率 

利用DC-DC开关电容稳压器提升便携设备电源效率 

作者:时间:2013-04-26来源:网络收藏


  手持式装置核心处理器的供电电压日益降低,但要兼顾效率与电池寿命,却是另一项挑战。在降压转换过程中最常利用的是开关和LDO,但缺点在于尺寸太大,LDO如电压偏离值很大时,转换效率就骤降,开关电容为新兴技术,结合开关电容器和LDO优点,可整合至可携式应用中。

  设法降低核心处理器的供电电压是手持式装置的全新技术趋势之一,而在降压的同时,也必须兼顾以更高效率延长电池寿命的需求。目前这些装置裡有多种新功能都有降压转换需求,如应用处理器、记忆体和射频(RF)设计等,从负载和空间参数两项考量来看,目前在此类应用上最流行的解决方案,即採开关稳压器和低压降 (LDO)稳压器。

  如只从效率考量,开关稳压器是最佳的选择,然当电子零件高度和解决方案的尺寸限制超出电感器使用範围时,就可能改採LDO或开关电容(SC)稳压器形式,电源解决方案通常无法提供较多电路板空间,但开关稳压器可提供比LDO和开关电容稳压器更大的解决方案尺寸。

  图1为将典型的开关稳压器与开关电容稳压器在解决方案尺寸上进行比较,可看出开关稳压器解决方案尺寸大约为45平方毫米,开关电容器为25平方毫米,开关稳压器大多需2.2μH电感,当以开关电容稳压器转换电力却不希望使用电感时,开关稳压器可能是小而有效率的替代品。

  电压偏离导致LDO效率降低

  LDO在要求的电压与电池电压相近时最有效率,但如电压偏离值很远时,LDO效率就会降的很低,例如以3.6伏特电压为一个仅要求1.5伏特电压的微处理器锂离子电池充电时,把电池电压与1.5伏特LDO连接起来,就能为微处理器产生一个完整、稳定和小量的电源,但耗电量却非常明显。

  LDO消耗功率(PD)等于负载电流(ILOAD)与输入和输出电压的差相乘,即PD=ILOAD×(3.6~1.5)=ILOAD×2.3V。换句话说,此例中,如以LDO做降压时,仅产生42%的效率,表示LDO消耗剩余功率,且大幅增加晶片(Die)温度,而此种温度上升将引发装置可靠性相关问题。

  由于具电压增益能力,开关电容稳压器成为比线性稳压器更有效的解决方案,此电压增益透过在双相位,即充电相位和传输相位中的堆叠电容器和并行电容器所取得的输入电压与输出电压比率,如位于增益配置中的一个开关电容的1/2将把一个3.6伏特的输入电压(VIN)转变为1.8伏特的输出电压 (VOUT);如要求的输出电压是1.5伏特,则功率消耗仅为300毫伏特与负载电流的乘积,相当于83%的效率。

  开关电容器可保持给定负载效率

  随着VIN的上升,由转换器产生的VIN和VOUT间的能量增加将引起功率耗损和效率下降。解决此问题所採取的模式为转变一个更高的效率增益,如同汽车替换档位一般。图2显示开关电容器降压稳压器、LDO及开关电容器的效率曲线。开关电容器类比设有一个类比增益控制和变化,以保持给定负载效率持续性,开关电容器具离散增益步骤,由VOUT/(增益×VIN)来给定效率,且这些效率取决于离散增益,一个LDO仅拥有一个增益及3者中最低的效率,开关电容器稳压器则有3个不同的电压增益,即2/3、1/2和1/3。

  从SC稳压器随着VIN的增长可看出,电压增益变化从2/3~1/2及1/2~1/3,因此整个负载範围的效率达最大化,带来锂离子电池电压範围 3.4~3.8伏特上80%的功率,在相同应用中的LDO却仅达到50%效率,随电感器种类不同,典型的开关稳压器应具有88~90%效率。

  传统上,稳压器乃依据有效数量进行比较,但由于锂离子电池特性,要根据时量效率或锂离子电池充分放电所需时间来判定,根据经验,运用200毫安培的负载电流,使用典型开关稳压器,可比使用开关电容稳压器持续时间多出6~8%,假设最大负载与微处理器中的情况一样,仅表现到时间的20~30%,则电感开关和开关电容稳压器间操作时间的差别可忽略。

  须在效率与成本之间取捨

  开关电容稳压器的更多增益可能会增加少许效率,但却须要增加更多外部电容器和内部场效电晶体(FET),促使成本上升,同时也增加解决方案尺寸。上述增益可透过两个外部电容器


上一页 1 2 下一页

关键词: DC/DC 稳压器 转换器

评论


相关推荐

技术专区

关闭