新闻中心

EEPW首页 > 模拟技术 > 设计应用 > FPGA+DSP的高速通信接口设计与实现

FPGA+DSP的高速通信接口设计与实现

作者:时间:2013-12-04来源:网络收藏

摘要:在雷达信号处理、数字图像处理等领域中,信号处理的实时性至关重要。由于芯片在大数据量的底层算法处理上的优势及芯片在复杂算法处理上的优势,+的实时信号处理系统的应用越来越广泛。ADI公司的TigerSHARC系列芯片浮点处理性能优越,DSP的DSP+处理系统正广泛应用于复杂的信号处理领域。同时在这类实时处理系统中,FPGA与DSP芯片之间数据的实时通信至关重要。

  TigerSHARC系列DSP芯片与外部进行数据通信主要有两种方式:总线方式和链路口方式。链路口方式更适合于FPGA与DSP之间的实时通信。随着实时信号处理运算量的日益增加,多DSP并行处理的方式被普遍采用,它们共享总线以互相映射存储空间,如果再与FPGA通过总线连接,势必导致FPGA与DSP的总线竞争。同时采用总线方式与FPGA通信,DSP的地址、数据线引脚很多,占用FPGA的I/O引脚资源太多。而采用链路口通信不但能有效缓解DSP总线上的压力,而且传输速度快,与FPGA之间的连线相对也少得多,故链路口方式更适合于FPGA与DSP之间进行实时数据通信。

  1 TS101和TS201的链路口分析与比较

  TS101和TS210都是高性能的浮点处理芯片,目前两者都广泛应用于复杂的信号处理领域。TS201是继TS101之后推出的新型芯片,核时钟最高可达600MHz,其各类性能也相对优于TS101,而且TS201的链路口采用了低压差分信号LVDS技术,功耗更低、抗噪声性能更好。表1列出了两种芯片链路口性能的详细比较,其中TS101核时钟工作在250MHz,TS201核时钟工作在500MHz。

  FPGA+DSP的高速通信接口设计与实现

  由于TS101收发端共用一个通道,所以只能实现半双工通信。而TS201将收发端做成两个独立通道,可实现全双工通信,理论上数据的传输速率可以提高一倍。虽然TS201的链路口收发通道独立,但实际上二者的收发机制大体相同,都是靠收发缓存和移位寄存器收发数据。然而FPGA内部的链路口设计不必拘泥于此,只要符合链路口通信协议并达成通信即可。

  2 FPGA与DSP的链路口通信

  2.1 链路口通信协议分析

  TS101的链路口共有11根引脚,通过8根数据线(LxDAT[7..0],这里x可以是0、1、2或3,代表TS101或TS201的0号-3号链路口中的一个,以下同)进行数据传输,并采用3根控制线(LxCLKOUT、LxCLKIN、LxDIR)来控制数据传输时钟、通信的握于和数据传输方向。其中LxDIR为通知链路口当前工作状态是接收或发送的输出引脚,可悬空不用。TS201的链路口共24根引脚,接收和发送各12根引脚,通过LVDS形式的数据线(LxDAT_P/N[3..0])和时钟线(LxCLK_P/N)进行数据传输,并采用LxACK和LxBCMP#(‘#’代表信号低有效)来通知接收准备好和数据块传输结束。

  采用FPGA与DSP通过链路口通信的关键是令双方通信的握手信号达成协议,促使数据传输的进行。实际上,如果考虑TS201的LVDS信号形式已经被转换完毕,则TS101和TS201链路口传输的数据形式是一样的,都是时钟双沿触发的DDR数据,并且每次传输的数据个数都是4个长字(即128bit)的整数倍。鉴于以上两种芯片链路口数据的共同点,所以采用FPGA与两类芯片通信时,接收和发送的数据缓存部分的设计应该是很相近的,只是通信握手信号部分的设计应当分别加以考虑。下面分别给予介绍。

  2.2 基于FPGA的TS101链路口设计

  图1给出了FPCA与TS101进行半双工链路口通信的设计(对LxCLKOUT、LxCLKIN均以FPCA的角度来叙述),该接口由接收、控制和发送三部分组成。本设计FPGA时钟为40MHz,TS101核时钟上作在250MHz,链路口时钟设定为DSP核时钟的8分频,FPGA与DSP的实际数据传输率为62.5MBps。

  FPGA+DSP的高速通信接口设计与实现

fpga相关文章:fpga是什么


通信相关文章:通信原理



上一页 1 2 3 下一页

关键词: FPGA DSP 高速通信 接口设计

评论


相关推荐

技术专区

关闭