新闻中心

EEPW首页 > 元件/连接器 > 设计应用 > 碳化硅MOSFET的短路实验性能与有限元分析法热模型的开发

碳化硅MOSFET的短路实验性能与有限元分析法热模型的开发

作者:D.Cavallaro*, M.Pulvirenti, E.Zanetti, M. Saggio 时间:2019-02-28来源:电子产品世界收藏

  表1总结了测试器件中两个样品的实验结果,从测量结果看,两个样品的损耗程度不同。 样品1的本征栅源电阻为3.3kΩ,除连续栅极电流吸收异常外,MOSFET的其它功能未受任何影响。相对于标准操作条件,样品2本征栅源电阻低很多,而栅极吸收电流却升高。即使开关能量在受损最严重的样品上显著提高,两个样品仍然能够维持功能正常,如图3(d)所示。

本文引用地址:http://www.eepw.com.cn/article/201902/398105.htm

表1实验最终结果和样品特性

1551340470397546.jpg

  因此,为了解释失效机理,我们使用Silvaco工具[4]在实验静态条件下进行结构模拟,如图5(a)所示,并且提取了碳化硅结构内部电压/电流密度分布数据,如图5(b)所示。 在Atlas(用于器件模拟的Silvaco工具)中,FE器件的栅极偏压最高20V,漏极触点偏压最高400V。使用实验数据集微调传导模型,以便在饱和条件下也能取得适合的阈值电压或I-V特性。栅极氧化层与碳化硅界面处的状态能量密度分布,各向异性迁移率值和电子饱和速度,是在实验数据和模拟输出之间实现良好匹配的关键参数。 传导模型可提供在实验期间芯片上耗散功率的精确分布,所以传导模型微调对建模策略具有非常重要的意义。

5.jpg

图5 Silvaco工具:(a)模拟的垂直剖面图 (b)功率分布图

  本文提出的建模方法就是,使用Silvaco工具进行结构模拟,根据模拟输出的功率分布数据,为有限元方法(Comsol Multiphysics[5])物理模型提供随时间变化的功率分布实验数据。 该模型专门用于研究类似于持续几微秒的短路类事件,理解并解释在短功率脉冲期间碳化硅MOSFET结构内部发生的情况,同时将碳化硅的热特性(热导率和热容量)视为温度的函数。利用这个新模型研究内部结构的热行为,并评估结和周围层的温度。图6(a)和图6(b)所示是温度达到峰值时的热图和热通量,指示了最高温度所在的位置(图6(a))以及在整个结构内部热量是如何传递的(图6(b))。热分布可发现短路试验主要涉及器件的哪些部分,解释实验观察到的失效模式。图6(c)显示了不同层的温度分布与时间的关系:温度峰值是结构顶层的温度,与当前已知的临界值一致[6]

1551340498481620.jpg

图6(a)3D热图,(b)热通量和(c)短路期间的温度分布。

  结论

  本文创建的有限元考虑到了MOSFET的物理结构和试验数据。该建模方法能够估算在短功率脉冲特别是短路实验条件下,结和周围层中的温度分布情况,解释了实验观察到的失效现象。

  鉴于没有设备能够准确地检测到如此短暂的脉冲在被测器件上产生的温度上升,并且典型是为量产封装或系统器件开发的,无法有效地用于分析此类事件,因此,试验结果对建模策略实施具有非常重要的意义。

  致谢

  本文部分实验是在ECSEL JU项目WInSiC4AP(高级电源宽带间隙创新SiC)的框架内进行的,授权协议编号:737483

  参考文献

  [1] Y. Shi, at al., Switching Characterization and Short-Circuit Protection of 1200 V SiC MOSFET T-Type Module in PV Inverter Application, IEEE Trans. on Ind. Elec., vol. 64, no. 11, pp.: 9135-9143, Nov. 2017.

  [2] G. Romano, at al., A Comprehensive Study of Short-Circuit Ruggedness of Silicon Carbide Power MOSFETs, IEEE J. Em. and Sel. Top. In Power Elec., vol. 4, no. 3, pp.978-986.

  [3] L.Ceccarelli at al., Compact Electro-Thermal Modeling of a SiC MOSFET Power Module under Short-Circuit Conditions, IECON 2017, pp: 4879-4884.

  [4] ATLAS User’s Manual, SILVACO, Inc.

  [5] Comsol Multiphysics® User’s Guide.

  [6] Z.Wang at al., Temperature-Dependent Short-Circuit Capability of Silicon Carbide Power MOSFETs, IEEE Trans. On Power Electr., Vol. 31, no. 2, Feb. 2016


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭