新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 基于挠性覆铜箔的平面无源集成LC单元设计

基于挠性覆铜箔的平面无源集成LC单元设计

作者:时间:2010-10-12来源:网络收藏

随着信息产业及其带来的消费类电子产品的迅速发展,为电力电子行业带来巨大的市场,在通信、计算机以及各种移动设备中,都需要大量的电力电子变流器。大多数电力电子变换器中器件占据了变换器很大的体积,提高开关频率可以减小储能元件的体积。分立型的电感电容通常体积大,元件较多,空间利用率不高,阻碍了功率密度的提高。通过电磁作用将电感、电容、变压器为一个模块可以克服这些缺点。
电感器与电容器技术是利用电感绕组之间的寄生电容作为部分电路参数实现部分电路功能。为了增大电感绕组之间的寄生电容,可以通过特殊结构(如平面绕组结构)或者增大介质材料的介电常数(选用具有较大介电常数的介质材料)。电感与电容后为一个器件,即为LC单元。
VANWYK J D教授在磁元件与电容元件集成方面开展了大量的工作,提出电感器-电感器-电容器-变压器(L-L-C-T)集成结构,电感电容集成结构作为原边绕组,铜箔作为副边绕组。为了增大变压器漏感作为谐振电感,在原边绕组和副边绕组之间加入一层低磁导率的磁性材料作为“漏感层”来调节漏感,整体采用平面结构,可以减小元件的总体积和高度,提高变流器功率密度。这种结构采用的是EI型磁芯。
参考文献[1]中提出了基于柔性多层带材绕组的集成EMI滤波器结构,采用介电常数较低、温度和频率稳定性好的薄膜电介质材料来实现电容,克服了增大电容的困难。但所占据空间的体积仍然比较大,不符合现代开关电源的“短、小、轻、薄”的发展趋势。参考文献[2]中的平面PCB绕组电感电容集成结构,虽然可以减小磁芯的高度和尺寸,绕在EI型磁芯上可以实现很大的电感,但磁芯中柱也占据了很大面积。综合参考文献[1]和参考文献[2]的思路,在现有实验条件下,本文提出了一种基于多层挠性箔交错并联的平面集成LC结构,采用CI型磁芯,实现了串联谐振、并联谐振集成,最后测试了样机的谐振点并与pspice软件的仿真结果进行了比较,得出集成的平面LC单元有效性和可行性的结论。
1 集成结构的设计
1.1 多层交错并联集成单元的设计

集成LC单元材料选用挠性箔聚酯薄膜。挠性箔薄膜[3]是一种由金属导体材料和介电基片,通过胶粘剂经热压粘结的复合材料。这种产品可以随意卷绕,挠性覆铜箔材质比较薄,适合多层交错并联结构。本文采用的是聚酯薄膜挠性覆铜箔材料。如图1所示的挠性覆铜箔材质,其上层为50 μm的铜箔,中间为25 μm的粘胶剂,下层为50μm电介质材料,该电介质材料是聚酯薄膜,介电常数为3。

本文引用地址:http://www.eepw.com.cn/article/187773.htm

图2为单层集成结构及其串/并联等效电路图,将聚酯薄膜裁剪成如图2(a)形状,两片紧压叠放。上下两面铜箔形成电感,位于中间的介质材料与上下两面的铜箔形成电容,因此形成了电感和电容的集成结构,如图2(b)。这样的结构可以同时得到确定的电感、电容,即通电后既有磁场储能,也有电场储能,并通过适当的连接方式与外电路相连,可以等效为串联谐振或并联谐振电路。当把端点A、D与外电路连接时,B、C两端悬空,形成电感、电容的串联谐振形式;当端点A、D与外电路连接,B、C两端直接相连接时,即形成了电感、电容的并联谐振形式,其等效电路如图2(c)所示。


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭