新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 基于UC38 75的ZVZCS PWM软开关直流电源的研制

基于UC38 75的ZVZCS PWM软开关直流电源的研制

作者:时间:2009-02-23来源:网络收藏
目前,中、大功率电源的主回路基本上都是采用全桥变换器结构,其相应的软工作方式有三种,即零电压(ZVS)、零电流开关(ZCS)和零电压零电流开关()。ZVS工作模式下全桥变换器的滞后臂不易实现零电压开关且存在变压器副边电压占空比丢失,ZCS工作模式下全桥变换器的滞后臂不易实现零电流开关且存在变压器副边输出电流占空比丢失,这两种电路拓扑自身的局限限制了其进一步发展的空间,虽然采用辅助电路在一定程度可以改善其特性,但是增加了元器件和电路的复杂性,而且在高频下还会引入干扰。软开关工作模式基本上克服了ZVS和ZCS软开关模式的固有缺陷,使全桥变换器的超前臂实现ZVS,而滞后臂实现ZCS,在中、大功率开关电源中具有广阔的应用前景。为此,本文介绍了一台采用移相谐振控制芯片75作为控制核心设计的开关频率为70kHz、输出功率1.2kW、主电路为移相全桥 软开关模式的直流开关电源。

l 移相式ZVZCS软开关电源主电路分析
在设计制作的1.2kW(480V/2.5A)的软开关中,其主电路为全桥变换器结构,四只开关管均为MOSFET(1000V/24A),采用移相ZVZCS控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS,电路结构简图如图l,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,以实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。
其基本工作原理如下:
当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定的移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。

本文引用地址:http://www.eepw.com.cn/article/181471.htm

由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。
当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、VT4、VD4进行放电,Cb两端电压维持不变,这时流过VT4电流为零,关断VT4即是零电流关断。
关断VT4以后,经过预先设置的死区时间后开通VT3,由于电压器漏感的存在,原边电流不能突变,因此VT3即是零电流开通。
VT2、VT3同时导通后原边向负载提供能量,一定时间后关断VT2,由于C2的存在,VT2是零电压关断,如同前面分析,原边电流这时不能突变,C1经过VD3、VT3、Cb放电完毕后,VD1自然导通,此时开通VT1即是零电压开通,由于VD3的阻断,原边电流降为零以后,关断VT3,则VT3即是零电流关断,经过预选设置好的死区时间延迟后开通VT4,由于变压器漏感及副边滤波电感的作用,原边电流不能突变,VT4即是零电流开通。
这种采用超快恢复二极管阻断原边反向电流方式的移相式ZVZCS PWM全桥变换器拓扑的理想工作波形如图2所示,其中Uab表示主电路图3中a、b两点之间的电压,ip为变压器T原边电流,Ucb为阻断电容Ub上的电压,Urect是副边整流后的电压。

2 75的主控制回路设计
为了实现主回路开关管ZVZCS软开关,采用75为其设计了PWM移相控制电路,如图3所示。考虑到所选MOSFET功率比较大对芯片的四个输出驱动信号进行了功率放大,再经高频脉冲变压器T1、T2隔离最后经过驱动电路驱动MOSFET开关管。整个控制系统所有供电均用同一个15V,实验中设置开关频率为70kHz,死区时间设置为1.5μs,采用简单的电压控制模式,电源输出直流电压通过采样电路、光电隔离电路后形成控制信号,输入到UC3875误差放大器的EA一,控制UC3875误差放大器的输出,从而控制芯片四个输出之间的移相角大小,使电源能够稳定工作,图中R6、C5接在EA一和E/AOUT之间构成PI控制。在本设计中把CS+端用作故障保护电路,当发生输出过压、输出过流、高频变原边过流、开关管过热等故障时,通过一定的转换电路,把故障信号转换为高于2.5V的电压接到CS+端,使UC3875四个输出驱动信号全为低电平,对电路实现保护。
图4是开关管的驱动电路。隔离变压器的设计采用AP法、变比为l:1.3的三绕组变压器。UC3875输出的单极性脉冲经过放大电路、隔离电路和驱动电路后形成+12V/一5V的双极性驱动脉冲,保证开关管的稳定开通和关断。

pwm相关文章:pwm原理



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭