新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 大功率介质阻挡等离子体电源特性及工业应用研究

大功率介质阻挡等离子体电源特性及工业应用研究

作者:时间:2009-07-27来源:网络收藏

引言
放电(DBD)最早起源于对臭氧发生及其技术的。近二十多年来,由于化学合成与分解、环境污染治理等方面的需求,同时又由于材料科学和电力电子技术等相关学科也取得了较大的发展,因此促进了对产生系统的,并很快成为低温非平衡的热点之一。
等离子体装置作为一个由反应器、、媒质气体等组成的系统,通常要在适当的气体流量、气体压力、湿度和一定的电压、频率条件下工作,是给放电装置提供能量的重要组成部分,亦是关键技术。
本文研制和开发了介质阻挡等离子体发生电源系统,通过一系列实验室和现场工程试验,获得了电源运行和稳定工作条件,进行了长期运行输出功率20~30kW、最大输出功率约80kW的试验,实现适用介质阻挡放电的百千瓦级电源的,掌握了此类电源的设计和制造核心技术。

本文引用地址:http://www.eepw.com.cn/article/181300.htm

1 电源工作原理与技术要点
介质阻挡等离子体发生器电源自上个世纪以来随着电子技术、电力电子技术、控制技术和材料技术等相关学科和技术的发展,经历了工频(50/60Hz)、中频(几百至几千Hz)和高频(>10kHz)三个阶段,高频高压串联负载谐振式电源是目前主要发展方向。本文研制电源的主电回路亦采用高频高压串联负载谐振式工作方式,其谐振式控制采用电流过零关断形式。
1)介质阻挡等离子体串联谐振式电源工作原理
Hideaki Fujita和Kazuyuki Ohe分别设计了用于介质阻挡等离子体系统的脉冲密度控制电源和用于臭氧生产的时控逆变电源。电源的电压和频率是两个重要参数,研究电压和频率对放电性能的影响的报道也很多,但在激励电源变压器参数与反应器结构参数相匹配方面的研究还未见报道。由于介质阻挡等离子体系统中存在具有感性的电源变压器和具有容性的介质阻挡等离子体反应器,实际上构成了一个R、L、C串联电路系统,该系统必然存在一个固有谐振频率,并会影响到介质阻挡等离子体系统的频率,进而影响介质阻挡等离子体的放电性能。因此,对介质阻挡等离子体系统谐振问题的研究对于提高系统放电性能参量具有十分重要的意义。
本文采用串联谐振式电源,其主回路如图1所示,线框I代表的是串联逆变供电电源,其中整流二极管VDZ1~VDz6组成三相不可控整流,和滤波电感L和储能电容C1、C2共同形成逆变电路输入的直流电压VD1;IGBT的VT1~VT2和快恢复二极管VD1~VD2构成半桥逆变电路;线框II是电流过零关断谐振控制电路,由霍尔电流传感器TFI检测信号,输入谐振控制器CTRL,CTRL产生IGBT控制信号,输入IGBT控制极;线框III为阻挡介质反应器等效电路,其中Cd和Cg分别为未放电时介质和气隙等效电容,VDZ为击穿电压为Uz的等效双向稳压二极管。TF为高频升压变压器。

2)串联谐振式控制与电流过零关断
高频高压串联负载谐振式电源的主要控制方式有:率因数调节PFR(Power FactorRegulation),PFR控制靠改变驱动信号与反馈电流Ui的相位来调节输出功率;脉冲密度调制PDM(ulse Density Modulation),PDM控制通过对逆变器的开关脉冲进行间断控制,调节输出脉冲密度的大小,以达到功率调节的目的;移相控制一脉冲宽度调制PSC―PWM(hase ShiftingContr0l-PWM),PSC-PWM控制将基本桥臂的驱动信号与反馈电流Ui同相位,再使移动桥臂驱动信号超前或滞后基本桥臂驱动信号一个相角。
但是,上述串联负载谐振式电源控制方式都存在电子开关损耗大,影响电子开关安全使用的问题,电子开关的损耗随着频率增大成比例增加,限制了功率提高。为提高开关功率,降低开关损耗,减小电源体积,本文采用准谐振电流过零的软关断技术,有效地降低伴随着高频化带来的损耗,突破大功率IGBT模块的长期工业化安全使用难题。
本文采用的准谐振电流过零电子开关软关断方法,工作原理如下:

图2是研制电源TFI测量主电流IL曲线,一个谐振工作周期分为t0~t2:两个工作区间。区间l(t0≤tt1),t0前VT2导通,t0时刻IL过零,控制回路检测到过零点时,VT2零电流关断,实现所谓“过零关软关断”,此时VT1尚未导通,电流通过VD1向电源反馈能量;t0后控制信号在t0时刻驱动VT1导通。区间2(t1≤tt2),到t1时刻,电流IL再次过零,控制信号在t1时刻驱动VT1零电流关断,然后驱动VT2导通;工作至t2时刻IL再次过零。t2~t3~t4时段,电路进入下一周期的循环。由于是控制回路检测到过零点时驱动开关关断导通和开关,主回路的工作频率fs取决于主回路的谐振参数,选取适合的主回路参数,将谐振频率限制在16~30kHz,对于大电流IGBT安全工作是非常必要。


2 等离子体发生电源工业运行
本文研制电源是为大型介质阻挡放电负载配套,运用于等离子体烟气脱硫脱硝工业装置。在一系列工业试验和运行中,本电源系统表现稳定、可靠,达到了工程研制目标,表现出优秀特性。
如图3所示,整个大功率电源实际工业系统的组成如下:三相380V工频交流电源,先经过隔离变压器,再经三相调压变压器降压至工作电压,输入高压高频发生电源,产生的高压高频电流加载在由板一板电极结构组成的介质阻挡放电负载上。

隔离变压器输入和输出均为380V,隔离变压器的主要作用是:保证后续电路与供电主回路的隔离以免受到主回路中比较大的电压、电流特性变动的影响,达到后续电路的稳定性,同时防止高压脉冲电源对主回路的影响,防止造成电源污染,提高整个一二次电路的安全性和可靠性。三相调压变压器通过输出电压调节,控制电源系统的功率输出,本电源系统使用的机械式调压变压器,也可很方便的采用电子调压方法。阻挡介质放电负载为多个板一板电极结构负载的并联,为一般大功率阻挡介质放电负载形式。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭