新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 串联式混合动力系统APU结构设计

串联式混合动力系统APU结构设计

作者:时间:2011-06-20来源:网络收藏

引言

本文引用地址:http://www.eepw.com.cn/article/178993.htm

  技术是解决汽车能源和污染问题的重要途径。根据结构可以分为式、并联式和混联式。发动机与车辆完全机械解耦,其运行工况不受汽车行驶工况的影响,可始终控制在优化的工作区稳定运行,最适合负载频繁变化的城市公交车。

  式混合动力的核心部件包括辅助动力单元()、储能单元和电动机等,其中是系统的主要能量来源,它的选型和匹配对系统性能的影响很大。此外,在混合动力系统中应用制动能量回收策略和怠速停机策略可以大幅提高系统的燃油经济性[223],但也需要一些能量分配策略和系统方面的变化。

  本研究为一辆12m串联式混合动力城市客车开发了一套基于天然气发动机的,并优化了APU结构,在发动机和发电机之间增加离合器来保证APU起动的可靠平顺,最后对该APU系统进行了台架和实车试验,验证其性能。

  1 选型与匹配

  根据整车的功率要求来选择发动机和发电机。

  通常用于12m城市客车的天然气发动机为170~190kW的6缸机,采用串联式混合动力系统之后,发动机只工作在优化的工况区域,对发动机最大功率的要求可以降低很多。

  经仿真计算,APU系统所需的平均功率约为40kW,标定功率不低于70kW,峰值功率不低于80kW。发动机输出功率至APU输出功率的转换效率为80%~85%,因此对发动机的基本要求为标定功率大于87kW,峰值功率大于100kW,功率50kW附近有较高效率。因此,本研究最终选择4CT180天然气发动机,该机标定功率132kW,标定功率转速2300r/min,最大扭矩680N·m,最大扭矩转速1500r/min,排放达到欧洲标准。发动机的优化工况区域为1200~1500r/min,在此区间内发动机最大输出功率为106kW,满足设计要求。

  发电机的选取必须与发动机的输出相匹配。交流永磁同步电机具有效率高、功率密度大的特点,适合用作APU的发电机。本研究选择StamfordUC274C发电机,其标定状态为100kVA,380V,152A(最大电流),50Hz,1500r/min,励磁输入为42V,5A,输入轴可承受转矩大于700N·m。发电机的输出还需经过整流器由交流变为直流后才是APU的输出,本研究选择了效率较高的不可控整流器,可传递功率120kW。

  2 APU

  串联式混合动力系统中,APU的输出与驱动电机、动力电池通过电系统耦合在一起,因此,各部件机械结构相对独立,可以分开设计。APU的主要考虑发动机和发电机之间的连接方式。

  传统APU的结构设计比较简单,多采用发动机输出轴—过渡连接盘—发电机输入轴的形式直接连接发动机和发电机。由于发电机转子的转动惯量非常大(约1kg·m2),接近发动机曲轴转动惯量的10倍,直连方式会致使发动机无论何时都要承受额外负担。起动时,由于转动惯量增大,发动机可能出现“起不来”的现象,严重时还会烧毁起动电机;而怠速时,发动机需多驱动一个巨大的转子,会有能量损失。

  对于串联式混合动力城市客车来说,发动机工作在怠速工况的时间很长,APU直连方式造成的能量损失累计起来就很大。若采用怠速停机策略降低系统能耗,发动机需频繁起停,其起动必须平顺可靠,而直连方式难以保证这一点。

  针对上述问题,本研究提出了一种发动机和发电机非直接连接的结构(见图1)。发动机和发电机之间增加了1个电控离合器,APU可以在离合器脱开的情况下空载起动发动机,再通过电控系统控制离合器平顺接合,使发动机驱动发电机输出能量。

  若发动机需长期处于怠速状态,APU也可以脱开离合器以减少能量损失。


上一页 1 2 3 4 下一页

评论


相关推荐

技术专区

关闭