目前射频前端元器件基本均由半导体工艺制备,如手机端的功率放大器(PA)和低噪声放大器(LNA)主要基于GaN、GaAs、SOI、SiGe、Si,射频(RF)开关主要基于CMOS、Si、GaAs和GaN材料,从目前的材料工艺角度来看,主要针对5G的Sub-6GHz范围。以PA为例,许多业内人士认为,GaN技术的运用将能为PA带来高效低功耗的优势。
关键字:
射频 GaN
今年整个产业在技术上也是节节攀升,2018年可以说是产业高速发展的一年,全球电子产业也产生了众多技术突破。
关键字:
芯片,GaN
目前,以碳化硅(SiC)和氮化镓(GaN)为代表的第三代化合物半导体受到的关注度越来越高,它们在未来的大功率、高温、高压应用场合将发挥传统的硅器件无法实现的作用。特别是在未来三大新兴应用领域(汽车、5G和物联网)之一的汽车方面,会有非常广阔的发展前景。 然而,SiC和GaN并不是终点,最近,氧化镓(Ga2O3)再一次走入了人们的视野,凭借其比SiC和GaN更宽的禁带,该种化合物半导体在更高功率的应用方面具有独特优势。因此,近几年关于氧化镓的研究又热了起来。 实际上,氧化镓并不是很新的技术,多年前就
关键字:
半导体 SiC GaN
移动应用、基础设施与航空航天应用RF 解决方案的领先供应商 Qorvo®(纳斯达克代码:QRVO)凭借行业首款 28 Ghz 氮化镓 (GaN)
前端模块 (FEM) --- QPF4001 FEM,扩大了其 5G 业务范围。在基站设备制造商涉足 5G 之后,这款新 FEM
可以帮助他们降低总体系统成本。 据 SNS Telecom & IT 介绍,28 GHz 频段是早期基于 5G 的固定无线接入 (FWA) 部署的首选频段,使运营商能够满足
5G 对速度、延迟、可靠性和容量的
关键字:
QORVO GAN
在多伦多一个飘雪的寒冷日子里。 我们几个人齐聚在本地一所大学位于地下的高级电力电子研究实验室中,进行一场头脑风暴。有点讽刺意味的是,话题始终围绕着热量,当然不是要生热取暖,而是如何减少功率转换器产生的热量。我们已经将MOSFET和IGBT分别做到了极致,但是我们中没有人对此感到满意。在这个探讨过程中,我们盘点了一系列在高压环境中失败的设备。 在那个雪花漫天飞舞的日子里,我们聚焦于选择新方法和拓扑,以寻求获得更高的效率和密度,当然也要找到改进健全性的途径。一位高级研究员帮助总
关键字:
德州仪器 GaN
从“砖头”手机到笨重的电视机,电源模块曾经在电子电器产品中占据相当大的空间,而且市场对更高功率密度的需求仍是有增无减。 硅电源技术领域的创新曾一度大幅缩减这些应用的尺寸,但却很难更进一步。在现有尺寸规格下,硅材料无法在所需的频率下输出更高的功率。而对于即将推出的5G无线网络,以及未来的机器人、可再生能源直至数据中心技术,功率都是一个至关重要的因素。 “工程师现在处于一个非常尴尬的境地,一方面他们无法在现有空间内继续提高功率,但同时又不希望增大设备所需的空间,”德州仪器产品经理Masoud Behe
关键字:
GaN,机器人
当今的半导体行业正在经历翻天覆地的变化,这主要是由于终端市场需求变化和重大整合引起。几十年前,业内有许多家射频公司,它们多半活跃于相同的市场,如今这种局面已被全新的市场格局所取代 - 有多个新兴市场出现,多家硅谷公司与传统芯片制造商进行重大兼并和收购。究竟有哪些因素推动着市场格局不断变化? 哪些因素在推动变革? 半导体行业格局的变化从根本上由两个要求驱动:对无所不在的传感和连接的需求。无论人们身处世界的哪个位置,无论在家中还是在工作场所,都希望能够安全、有效地与他人沟通交流。市场不再仅仅满足蜂窝手
关键字:
射频半导体 GaN
德州仪器(TI)近日宣布推出支持高达10kW应用的新型即用型600 V氮化镓(GaN),50mΩ和70mΩ功率级产品组合。与AC/DC电源、机器人、可再生能源、电网基础设施、电信和个人电子应用中的硅场效应晶体管(FET)相比,LMG341x系列使设计人员能够创建更小、更高效和更高性能的设计。 德州仪器的GaN FET器件系列产品通过集成独特的功能和保护特性,来实现简化设计,达到更高的系统可靠性和优化高压电源的性能,为传统级联和独立的GaN FET提供了智能替代解决方案。通过集成的<100ns电
关键字:
德州仪器 GaN
SiC和GaN MOSFET技术的出现,正推动着功率电子行业发生颠覆式变革。这些新材料把整个电源转换系统的效率提高了多个百分点,而这在几年前是不可想象的。 在现实世界中,没有理想的开关特性。但基于新材料、拥有超低开关损耗的多种宽禁带器件正在出现,既能实现低开关损耗,又能处理超高速率dv/dt转换,并支持超快速开关频率,使得这些新技术既成就了DC/DC转换器设计工程师的美梦,但同时也变成了他们的恶梦。 比如一名设计工程师正在开发功率转换应用,如逆变器或马达驱动控制器,或者正在设
关键字:
SiC GaN
纳微(Navitas)半导体公司宣布成为2018年11月4日至7日在中国深圳举办的第二届国际电力电子技术及应用会议(IEEEPEAC'2018)的钻石赞助商。在此次大会上,纳微将发布并展示GaNFast功率IC的重大发展成果,这些进展推动业界实现的新一代电源系统,将会打造能效、功率密度和快速充电的全新基准。 这些技术发展成果从27W到300W,包括用于智能手机、笔记本电脑、一体式电脑、电视/显示器以及GPU的充电器和适配器应用。纳微将展示客户
关键字:
GaN 电源 IC
横跨多重电子应用领域的全球领先的半导体供应商意法半导体(STMicroelectronics,简称ST;纽约证券交易所代码:STM)和CEA Tech下属的研究所Leti今天宣布合作研制硅基氮化镓(GaN)功率开关器件制造技术。该硅基氮化镓功率技术将让意法半导体能够满足高能效、高功率的应用需求,包括混动和电动汽车车载充电器、无线充电和服务器。 本合作项目的重点是开发和检测在200mm晶片上制造的先进的硅基氮化镓功率二极管和晶体管架构。研究公司IHS认为,该市场将在2019年至2024[1]年有超过2
关键字:
意法半导体 GaN
生成对抗网络(GAN)是当今最流行的图像生成方法之一,但评估和比较 GAN 产生的图像却极具挑战性。之前许多针对 GAN 合成图像的研究都只用了主观视觉评估,一些定量标准直到最近才开始出现。本文认为现有指标不足以评估 GAN 模型,因此引入了两个基于图像分类的指标——GAN-train 和 GAN-test,分别对应 GAN 的召回率(多样性)和精确率(图像质量)。研究者还基于这两个指标评估了最近的 GAN 方法并证明了这些方法性能的显著差异。上述评估指标表明,数据集复杂程度(从 CIFAR10 到
关键字:
GAN
TI正在设计基于GaN原理的综合质量保证计划和相关的应用测试来提供可靠的GaN解决方案。氮化镓(GaN)的材料属性可使电源开关具有令人兴奋且具有突破性的全
关键字:
GaN 可靠性 综合方法
作为电源工程师,我们能够回忆起第一次接触到理想化的降压和升压功率级的场景。还记得电压和电流波形是多么的漂亮和简单(图1),以及平均电流的计算是
关键字:
GaN 升降压 电源
行业标准的收紧和政府法规的改变是使产品能效更高的关键推动因素。例如,数据中心正在成倍增长以满足需求。它们使用的电力约占世界总电力供应(400千瓦时)的3%,占温室气体排放总量的2%。航空业的碳排放量也一样。随着对能源的巨大需求,各国政府正在采取更严格的标准和新的监管措施,以确保所有依赖能源的产品都需具有最高能效。 同时,我们看到对更高功率密度和更小空间的要求。电动汽车正尽量减轻重量和提高能效,从而支持每次充电能续航更远的里程。车载充电器(OBC)和牵引逆变器现在正使用宽禁带(WBG)产品来实现这一目
关键字:
SiC GaN
gan system介绍
您好,目前还没有人创建词条gan system!
欢迎您创建该词条,阐述对gan system的理解,并与今后在此搜索gan system的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473