光学在半导体、电子、资通讯产业的运用相当广泛,例如光电半导体的LED可做为灯号、照明;光电半导体的CCD、CMOS影像感测器可做数位相机、数位监控,光机电微系统的DMD可做投影机;光电晶体、耦合器用于自动控制等。
或者是光储存,如BD蓝光光碟片;或者是光通讯,如FTTH光纤到府宽频,而光通讯实际上又分成有线与无线,有线如光纤到府,即xPON的各种被动式光学网路;或者是大企业的资讯机房、资料中心内所用的储存区域网路SAN;消费性电子领域,如过去Sony MD用的光学S/
关键字:
光通讯 CCD CMOS
ESD(静电放电)是CMOS电路中最为严重的失效机理之一,严重的会造成电路自我烧毁。论述了CMOS集成电路ESD保护的必要性,研究了在CMOS电路中ESD保护结构的设计原理,分析了该结构对版图的相关要求,重点讨论了在I/O电路中ESD保护结构的设计要求。
1 引言
静电放电会给电子器件带来破坏性的后果,它是造成集成电路失效的主要原因之一。随着集成电路工艺不断发展,CMOS电路的特征尺寸不断缩小,管子的栅氧 厚度越来越薄,芯片的面积规模越来越大,MOS管能承受的电流和电压也越来越小,而外围的
关键字:
ESD CMOS
在当前图像传感器市场,CMOS传感器以其低廉的价格得到越来越多消费者的青睐。在目前的应用中,多数采用软件进行数据的读取,但是这样无疑会浪费指令周期,并且对于高速器件,采用软件读取在程序设计上、在时间配合上有一定的难度。因此,为了采集数据量大的图像信号,本文设计一个以CPLD为核心的图像采集系统,实现了对OV7110CMOS图像传感器的高速读取,其读取速率可达8 Mb/s。
1、硬件电路方案
图1为基于CPLD的OV7110CMOS图像传感器的高速数据采集系统原理框图,他主要由2个部分组成:
关键字:
CPLD CMOS OV7110
引言
但是,目前市场上的大部分基于CMOS图像传感器的图像采集系统都是采用DSP与图像传感器相连,由DSP来控制图像传感器,然后由DSP采集到图像后再通过USB接口将图像数据传输到PC机进行后续的处理。这样的图像采集系统成本较高,功耗大,而且体积上也有一定的限制,并不适合一些简单的应用。
本文设计了一种基于S3C2410的CMOS图像传感器数据采集系统。该系统成本更为低廉、结构更为简单、设计更为新颖。
1 CMOS图像传感器结构性能及工作原理
该系统选用OmniVision公司
关键字:
ARM9 CMOS
金属氧化物半导体元件(Complementary Metal-Oxide Semiconductor,CMOS)图像传感器和电荷耦合元件(Charge Coupled Device,CCD)摄像器件在20年前几乎是同时起步的。CCD是应用在摄影摄像方面的高端技术元件,CMOS则应用于较低影像品质的产品中。由于CCD器件有光照灵敏度高、噪音低、像素小等优点,所以在过去15年里它一直主宰着图像传感器市场。与之相反,CMOS图像传感器过去存在着像素大,信噪比小,分辨率低这些缺点,一直无法和CCD技术抗衡。但
关键字:
CMOS 图像传感器
0 前言
织物上的疵点主要是由纤维上的花结引起的,计花器是纺织业中的一种常用设备,主要用于统计(或清除)纺锭上的花结,是确定纤维质量等级的主要依据。目前国产计花器主要有电容式和光电式两种,精度较低,对高支纤维的处理较困难。本文提出利用CMOS图像传感器,进行纤维花结的感知,其精度可达0.02mm,完全可以满足当前高支纤维的生产需要。
1 ME1010简介
ME1010是一个使用方便的综合图像传感器,由Microne公司采用专利结构开发,旨在使其更便于与计算机产品构成一个整体。不同于传
关键字:
CMOS 图像传感器 ME1010
引言
CMOS图像传感器是近年来得到快速发展的一种新型固态图像传感器。它将图像传感部分和控制电路高度集成在同一芯片里,体积明显减小、功耗也大大降低,满足了对高度小型化、低功耗成像系统的要求。与传统的CCD图像传感器相比,CMOS图像传感器还具有集成度高、控制简单、价格低廉等诸多优点。因此随着CMOS集成电路工艺的不断进步和完善,CMOS图像传感器已经广泛应用于各种通用图像采集系统中。同时作为一种PC机与外围设备间的高速通信接口,USB具有许多突出的有点:连接简便,可热插拔,无需定位及运行安装程序
关键字:
USB CMOS
联电积极扩充28奈米产能,预计今年中月产能可达2万片,28奈米毛利率将达平均水准。此外,联电已建置月产能约3,000片的14奈米生产线,预计第2季进行第2代14奈米鳍式场效电晶体(FinFET)制程试产,若下半年客户产品陆续完成设计定案(tape out),明年将开始拉升产能进入量产阶段。
联电去年第4季28奈米投片大增,包括高通、联发科等5家客户晶片进入量产,并有逾10家客户完成设计定案并展开试产,也让28奈米占去年第4季营收比重正式突破5%。联电已积极进行扩产,预估今年中可将28奈米月产能扩
关键字:
台积电 三星 FinFET
推动高能效创新的安森美半导体(ON Semiconductor) 推出新一代1,300万像素(MP)图像传感器AR1335,扩充其宽广的图像产品系列。基于先进的1.1微米(μm)像素技术,AR1335确立了灵敏度新基准,量子效率 (QE) 和线性电位井容量也得以显著提升。这图像传感器专为智能手机相机应用而设计,带来近乎数码相机的成像优质体验,同时也针对移动设备优化了功耗和占板空间。
安森美半导体为高性能智能手机传感器开发了创新的 1.1 μm像素技术,先进的像素和颜色滤波阵列 (CF
关键字:
安森美 CMOS 传感器
刚刚过去的2014年,加速了全球物联网的落地和普及,通过无线网络进行连接已渐成主流。未来5年,全球将有超过500亿个终端相互连接,进入一个全新的互联网时代。
然而,在一直被视为“高资本行业”的整个芯片产业,射频前端芯片作为移动网络连接的关键部分,却仍旧面临着一些挑战,技术良莠不齐的产业发展瓶颈亟待解决。
RFaxis市场与应用工程副总裁钱永喜
据了解,目前射频器件的主流制造材料是砷化镓,射频元件的成本较高,众多厂商都希望寻找更高性价
关键字:
物联网 射频 CMOS
“硅是上帝送给人类的礼物,整个芯片业几乎都拿到了这份礼物,无线通信领域应该尽快得到它。”RFaxis公司市场与应用工程副总裁钱永喜日前在接受媒体采访时如是说。他认为传统采用GaAs(砷化镓)或SiGe(硅锗)BiCMOS工艺制造RF射频前端的时代“该结束”了,纯CMOS工艺RF前端IC将在未来十年内主宰移动互联网和物联网时代。
业界对CMOS PA产品的热情一直没有减退。2014年6月,高通(Qualcomm)并购CMOS PA供应商Black S
关键字:
CMOS GaAs ZigBee
今年国内中低端智能手机的爆发对PA需求不断放大。从第二季度开始,PA芯片市场便处于供货紧张的状态,5月下旬更出现断货问题,PA芯片供给缺口越来越大。集微网记者今天有幸采访到国内射频前端厂商中普微电子的CEO焦健堂先生,业内亲切的称呼他“焦叔“,聊聊中普微电子的现状以及未来PA市场的发展前景。
2015年PA市场供货吃紧状态难解
PA(功率放大器)是手机中除主芯片外最重要的外围元件之一,影响着手机的信号强度、通信质量以及基站效率。2G手机时代仅需要两颗PA,而4G手机
关键字:
功率放大器 4G CMOS
0引言
心血管疾病日益严重地威胁着人类的生命,通过日常监护预先发现异常,及时施救,是对抗心血管疾病的重要手段。近年来一些便携式的家用心电仪陆续诞生,满足了心电参数快速采集的基本需求,改善了家庭护理条件。随着计算机和互联网技术的发展,远程监护系统应运而生,远程数据采集和分析对便携式心电仪在信息可视化、数据记录分析以及资源共享等方面提出了新的需求。
虚拟仪器是由计算机硬件资源、模块化仪器硬件和用于数据分析、过程通讯及图形用户界面的软件组成的测试系统。它以计算机作为统一的硬件平台,把传统仪器的专
关键字:
虚拟仪器 CMOS AD620
益华电脑(Cadence Design Systems)宣布,已与通讯网路与数位媒体晶片组供应商海思半导体(HiSilicon Technologies)已经签署合作协议,将于16奈米 FinFET 设计领域大幅扩增采用Cadence 数位与客制/类比流程,并于10奈米和7奈米制程的设计流程上密切合作。
海思半导体也广泛使用Cadence数位和客制/类比验证解决方案,并且已经取得Cadence DDR IP与Cadence 3D-IC 解决方案授权,将于矽中介层基底(silicon interp
关键字:
Cadence 海思 FinFET
三星电子(Samsung Electronics)在稍早传出开始量产采用14纳米FinFET制程技术的A9芯片,这对于三星来说,在抢佔先进微细制程市场以及与苹果(Apple)合作关系上,可以说是一箭双雕。
据ET News报导,三星美国奥斯汀厂传出已经开始量产采用14纳米FinFET技术的苹果A9。虽然美国奥斯汀厂以及韩国器兴厂均拥有FinFET制程的产线,但由于为量产的第一阶段,因此先由奥斯汀厂打头阵。
此外分析指出,由于顾及次世代芯片性能资安以及供应等问题,奥斯汀厂是在苹果的要求下首先
关键字:
三星 FinFET 14纳米
cmos finfet介绍
您好,目前还没有人创建词条cmos finfet!
欢迎您创建该词条,阐述对cmos finfet的理解,并与今后在此搜索cmos finfet的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473