电容触摸传感的理论框架
硬件概述
本文引用地址:https://www.eepw.com.cn/article/96947.htm用于捕捉传感器数据并将其转换为数值(读数)的硬件可采用许多方式开发。在电容触摸传感设计中,用硬件区分不同单片机供应商针对此应用推出的产品。根据公式2,可以测量和电流与电压关系有关的3个基本量:
1. 充电至固定电压需要的时间变化量(Δt,固定V);
2. 固定充电时间内的电压变化量(ΔV,固定t);
3. 固定时间周期中的频率变化量(Δf,固定T) 。
频率测量方案基于充电速率公式(重复许多次),但它对应于较长的周期T,而不是单个充电周期t。所以,充电至固定电压需要的时间变化量(Δt,固定V)和固定充电时间内的电压变化量(ΔV,固定t),定义了检测电容变化的基本方法。根据需要,可以基于这些基本方法来构造新的测量方案。
对于测量充电至固定电压需要的时间变化量这种方法,手指产生的附加电容会增加充电时间(C上升),所以时间读数会相应地上升。对于测量固定充电时间内的电平变化量这种方法,附加电容会降低相同时间量内所能达到的电压,所以电压读数会下降。最后,对于测量固定时间周期中的频率这种方法,频率会随振荡器RC常数的上升而下降。因此,频率读数会下降。
本文以频率测量方案为例进行说明,但每个系统都会应用后处理方案。使用一种方案时,电容读数可能会上升,而使用另一种方案时,电容读数可能会下降,但这可以在软件中调整。选择了硬件方案之后,读数将根据请求输入单片机,或按照软件配置指定的其他时间间隔输入单片机。
单片机软件与后处理
单片机中的软件负责处理电容触摸传感应用中的许多工作,前提是硬件和传感器均正常工作。传感器和整个系统的质量越好,软件的实现就越简单。开发软件之前,需要记住每个传感器都具有一定的固有寄生电容:Cp(或公式3中的C1)。因此,每个传感器都可以检测到某个标称值。通过观察传感器的输出,可以直观方便地确定它,但必须先在软件中设定该标称值,然后才能以此为基准计算相对于它的偏差。实现它的最好方式是创建一个滑动平均值——即,16点平均值。通过存储先前16个值来计算平均值的效率很低,所以改为使用一种看起来较复杂,但计算较简单、可节省存储空间的求均值方法。
与具有极强计算能力的较大的计算机处理器相比,单片机通常在这方面受到限制。与实际执行除法相比,使用移位、加法和减法可以降低性能损失。此外,这个求均值程序并不仅限用于电容触摸传感——它对于8位单片机的很多应用都非常有用。
评论