充电电路没有简单事,浅谈如何执行高效率设计
七、单节锂电池的应用举例
1、 作电池组维修代换品
有许多电池组:如笔记本电脑上用的那种,经维修发现,此电池组损坏时仅是个别电池有问题。可以选用合适的单节锂电池进行更换。
2、 制作高亮微型电筒
笔者曾用单节3.6V1.6AH锂电池配合一个白色超高亮度发光管做成一只微型电筒,使用方便,小巧美观。而且由于电池容量大,平均每晚使用半小时,至今已用两个多月仍无需充电。电路如图四所示。
3、代替3V电源
由于单节锂电池电压为3.6V。因此仅需一节锂电池便可代替两节普通电池,给收音机、随身听、照相机等小家电产品供电,不仅重量轻,而且连续使用时间长。
八、锂电池的保存:
锂电池需充足电后保存。在20℃下可储存半年以上,可见锂电池适宜在低温下保存。曾有人建议将充电电池放入冰箱冷藏室内保存,的确是个好注意。
九、使用注意事项:
锂电池绝对不可解体、钻孔、穿刺、锯割、加压、加热,否则有可能造成严重后果。没有充电保护板的锂电池不可短路,不可供小孩玩耍。不能靠近易燃物品、化学物品。报废的 锂电池要妥善处理。
便携产品充电电路旁路元件的选择
手机、数码相机、数码摄像机、DVD播放器、MP3播放器和PDA等便携式产品的充电电路设计可以采用四种不同的拓扑结构。四种解决方案都使用带外部旁路元件(见图1)的控制PMU(电源管理单元)。本文将探讨外部旁路元件的组成,并将讨论各种设计的优点和缺点。
图1 带外部旁路元件的解决方案
选择旁路元件取决于不同因素和它们各自对设计的重要性,包括开关效率、功率损耗、散热、驱动电路配置、PMU配置、PCB占位面积、封装高度、ESD 容差和价格。充电电路额定电流小于600mA时,旁路元件经常集成在PMU中,完全不需要外部元件,因此,本文着重于讨论额定电流为1A的便携式产品的充电电路。旁路元件的四种不同的拓扑结构如图2所示。
图2 旁路元件的四种不同的拓补结构
开关效率对于电路很重要,其中旁路元件的开关时间引起的损耗将影响电池寿命。
正在推出的开关充电电路在给定面积中的功耗比标准线性稳压器少。拓扑结构A、B和D适用于这种情况,设计人员在选择时可以着重考虑MOSFET的开关时间。
导电功耗是影响电路效率的重要因素。旁路元件上的压降越小,功耗就越小。拓扑结构A和B都含有肖特基二极管,其上的压降相对较高,因此功耗也较大。拓扑结构C是一个低VCEsat的双极晶体管(BJT),其中设计人员必须考虑驱动电流损耗以及BJT上的损耗。拓扑结构D使用了两个串联现代沟道(modern trench)MOSFET,其中两个元件都增加了损耗。背靠背布置的小RDS(ON) MOSFET可提供极小的导通功耗。
散热在线性稳压充电电路中起着重要作用。1A的线性稳压使这些超小的封装产生大量的热量。散热方法之一是使用单独封装的元件,让不同元件在PCB上均匀散热。替代方案是将几个元件封装在一起,设计时需要着重考虑的是封装热阻。WDFN 2mm×2mm封装中的BJT和MOSFET新产品的特征是垫盘暴露在下面,明显降低了热阻。使用拓扑结构C(BJT)时,设计人员需要考虑潜在的热量流失。
驱动电路配置会受PMU设计影响,大多数PMU会提供为BJT或MOSFET设计的驱动电路。在分立设计中,BJT会需要能被吸收或耗散的连续驱动电流。增益相对高的BJT需要更小的驱动电流。MOSFET需要高栅极电压以得到低导通损耗。对于P沟道器件,可能需要增加一个电平偏移,而N沟道器件可能需要增加一个电荷泵。
PMU配置可能使用旁路元件完成充电以外的功能。拓扑结构D中,旁路元件用作开关,让电流从充电电池返回到另一个元件或电路。这种配置经常用于笔记本电脑中的可拆卸电池组上,其中相同的电池组连接器用于电池充电并对笔记本电脑供电。而且,在电话中,电池可用于驱动外部扬声器、MP3播放器、蓝牙等。
由于设计人员要不断满足更新的挑战,在更小的空间中容纳更多的元件,因此,PCB占位面积和封装高度也起着重要的作用。WDFN(0.75mm)或 UDFN封装(0.55mm)的特征是外形极薄、占位面积小且性能高,它们是今天便携式电子设备的中常选用的器件封装方式。如果封装高度和占位面积不重要,那么设计人员可以从所有四种
评论