JMP在流程性产品质量改进中的应用
5.获得最终改善方案
通过多元回归建模方法建立重要因素X对溶出度Y的影响方程y=f(x)。而JMP在统计方法上的专业性在这一步得到明显的体现。下图是所选重要X变量和溶解度Y之间关系的表达式。从表达式可以看到,screen size和Y值的关系很明显:当“screen size=3”的时候,对Y没有任何负面影响;当“screen size=4”的时候,对Y略有影响,为“screen size=5”的时候,对Y的影响被扩大-4.16倍。这样的分析结果和第三步通过交互式图形进行分析的结果完全吻合。
对于应用人员来说,这样的表达式具备很好的数学意义,但是不利于解决问题。JMP采用了图形化的方式来展示这个表达式,我们截取了这个表达式的一部分图形,被称为“预测刻画器”,展示如下。为了得到Y即溶解度的最大值,只需点击图形刻画器菜单,选择“最大化意愿”,JMP会自动算出当Y最大的时候,对应的X参数的分别取值。图中,Y最大值为87.87303,对应的X分别为:API Particle Size =Medium,Mill time(研磨时间)=30,Screen Size =3 (这个结果也进一步验证了前面交互式图形分析的结论)……
6. 进行模拟(Simulation)预测以进一步完善新方案
JMP不仅分析功能强大,还自带了内容丰富、功能强大的模拟器,无需另外购买数据模拟软件。这也是其他同类软件所不具备的。
该药厂质量管理人员利用模拟功能,根据工厂现场生产的情况,在软件中花费短短几秒种,就能模拟出100万行生产记录,然后利用上述最优方程式,得到100万个Y值。我们对这100万个Y值进行分析,就能预测我们新获得的改善方案的实施效果。如果我们对效果不满意,还可以对方案进行进一步的改进,如果模拟的效果不错,我们就可以付诸试生产了。
评论