新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 超宽带无线视频监控系统的设计

超宽带无线视频监控系统的设计

作者: 时间:2012-03-03 来源:网络 收藏
DTH: 0px; BORDER-LEFT-WIDTH: 0px; BORDER-BOTTOM-WIDTH: 0px; MAX-WIDTH: 90%; WIDTH: 500px; HEIGHT: 226px; BORDER-RIGHT-WIDTH: 0px; border-image: initial" alt="超宽带无线视频监控系统的设计" src="/uploadfile/mndz/uploadfile/201203/20120303050139536.jpg">


  5.2 UWB 基带接收端设计

  UWB 接收端的基带处理部分如图6 所示, 使用了RAKE 加DFE 信道均衡的方式, 对抗多径衰落。经过ADC 采样的数据要首先经过匹配滤波。由于发送端使用了根升余弦滤波器进行波形成型,所以如果信道为加性高斯白噪声(AWGN)信道,接收端匹配滤波器应具有匹配的脉冲响应,才可达到最小错误概率接收。但由于系统工作的信道环境不是AWGN 信道, 信道模型十分复杂,所以最优匹配滤波器的设计难以实现。实际应用时,使用了方波进行匹配,这样既节省了乘法器,又不会导致性能的显着恶化。

超宽带无线视频监控系统的设计


  前导捕获、帧同步、信道估计以及同步跟踪都是基于PN 序列的自相关性质进行的。PN 序列具有尖锐的自相关峰,当2 个相同的PN 序列相位完全相同时,自相关运算的结果会产生一个峰值,而相位不同时,自相关运算结果却很小。捕获模块依靠本地PN 与前导序列的相关运算结果来判断是否有帧到达;信道估计通过检测前导序列中的多个相关峰, 得出每一条径的位置, 以便RAKE 接收处理;帧同步利用信道估计的结果,对帧头序列做相关检测; 同步跟踪利用跟踪序列的相关检测结果,调整定时偏差。

  RAKE 接收机的作用是完成多径信号的能量收集与信号合并。根据信道估计的结果,在接收数据中寻找每一条径的位置,对各条径做相关解调,并对结果进行合并处理。RAKE 接收机的算法种类有很多,出于可实现性与性能的综合考虑, 设计采用了PRAKE 加最大比合并的RAKE 算法。

  RAKE 接收后的载波恢复使用了经典的科斯塔斯(Costas)环完成,判决反馈均衡器(DFE)使用了基于LMS算法的自适应均衡器。通常情况下,载波恢复模块需要放在均衡器之后,但这样需要进行复数均衡,硬件实现开销较大。对于BPSK 调制来说,将载波恢复置于均衡器之前,可以使均衡器的抽头系数全部为实数,减小了硬件规模。

  基带处理最后的步骤是与发送端对称的信道解码与解扰。经过基带处理的信号被送往以太网成帧模块,实现最后的视频解码与显示。

  6 以太网成帧与视频显示软件设计

  经过UWB 传输后, 以太网成帧模块需要将接收到的应用层帧完整而透明地传输到PC 平台。该成帧模块仅使用符合以太网MAC 格式的帧单向传输数据,并不运行任何以太网MAC 协议。

  常见的100 Mbit/s 以太网可以提供12.5 Mbit/s 的传输速率,比物理层接口的速率要高。在以太网成帧模块前加入缓存,考虑到必要的开销,缓存大小比最大以太网帧大10%左右即可保证缓存不会溢出。

  在PC 平台,使用基于Windows 操作系统的WinPcap和OpenCV 软件开发包实现视频解码与显示。WinPcap是一套以太网软件开发包,提供全面的以太网帧收发、解析功能。OpenCV 提供了强大的视频解码和播放功能。

  使用WinPcap 和OpenCV, 大大简化了视频解码播放软件的开发难度。而任意一台安装了这两种软件包的WindowsPC 均可以运行程序,也增强了程序的可移植性。

  由于OpenCV 仅支持文件形式的图像解码与播放,所以需要将应用层帧中的JPEG 数据保存为临时文件,再进行播放。由于以太网帧解析、临时文件保存和图像显示均较为耗时,因此为了避免WinPcap 软件核心缓存的溢出,使用了多线程的处理办法。视频解码显示软件流程图如图7 所示。

<a class=超宽带系统的设计" src="/uploadfile/mndz/uploadfile/201203/201203



评论


相关推荐

技术专区

关闭