MEMS加速计的三种高压灭菌器失效机理
其中 l是键合线的长度,r 是键合线的半径,d是两条键合线之间的距离,εr是EMC的介电常数(干燥时和高压灭菌测试之后)。
象体积电阻率一样,EMC材料的介电常数也可以通过摄取水分来改变(图4)。干燥条件和吸水条件下的介电常数变化可能高达两个数量级。在低频率范围(小于1Hz),这种影响更明显。在较高频率范围,差别通常小很多。测试 MEMS 加速计的 QEN封装所用的特定EMC材料与 MEMS器件采用相同的高压灭菌器测试条件。表1显示了EMC材料的介电常数在高压灭菌器压力前后可能增加2.8%。
表1 EMC的介电性能: 96小时的高压灭菌器测试之后
项目 | 体积电阻率(ohm-cm) | 介电常数 | 耗散因子(%) | |
RT | 150C | |||
T=0 | 5.00E+16 | 1.00E+10 | 3.6 | 0.5 |
PCT96h | 1.00E+16 | 2.00E+10 | 3.7 | 0.7 |
EMC 介电常数出现2.8%的变化可能产生1.4fF的电容变化。如此小的电容变化要使用 LCR 仪表测量出来是不可能的,但它足以在9位输出上产生15个计数的偏移变化。高压灭菌器压力产生的寄生电容变化很难控制,因为它是EMC材料特征的一部分。但有几种设计对策可以缓解此问题。一种方法是提高传感器灵敏度,从而只需要较低的调制器增益。我们的观察也支持这种方法,发现用不同的MEMS加速计设计(具有2倍灵敏度)在高压灭菌器测试中有更好的表现。另一种方法是采用不同前端/架构设计,将屏蔽节点从中间节点分离出来,这样敏感节点和屏蔽节点之间的寄生电容不会产生偏移。
V. 结论
本文共讨论了MEMS加速计的三种高压灭菌器失效机理。分别说明了每一种失效机理的FA方法(通过建模和测量)和设计改进。排除了封装应力作为高压灭菌器失效的根源。传感单元内的漏电通过调制器扫频测量得到了确认。依据EMC材料的介电性能测量研究了寄生电容。我们认为漏电和寄生电容变化都存在于高压灭菌失效器件中。最后还为所确定的每个根源建议了设计对策。当测试结果一出来,就会按照报告的测试结果进行这些改进。
评论