新闻中心

EEPW首页 > 模拟技术 > 设计应用 > MEMS加速计的三种高压灭菌器失效机理

MEMS加速计的三种高压灭菌器失效机理

作者: 时间:2013-11-19 来源:网络 收藏
TE-SPACE: normal; ORPHANS: 2; LETTER-SPACING: normal; COLOR: rgb(0,0,0); WORD-SPACING: 0px; PADDING-TOP: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px">尽管前面的 FA 操作已经显示失效部件和漏电行为之间具有某种联系,但不能认为漏电是高压灭菌失效的唯一(或首要)根源。实际上是不能排除因高压灭菌压力而引起寄生电容变化。根据下列公式(图5),寄生电容(从键合线到键合线)估计大约为50fF。

其中 l是键合线的长度,r 是键合线的半径,d是两条键合线之间的距离,εr是EMC的介电常数(干燥时和高压灭菌测试之后)。

象体积电阻率一样,EMC材料的介电常数也可以通过摄取水分来改变(图4)。干燥条件和吸水条件下的介电常数变化可能高达两个数量级。在低频率范围(小于1Hz),这种影响更明显。在较高频率范围,差别通常小很多。测试 的 QEN封装所用的特定EMC材料与 器件采用相同的高压灭菌器测试条件。表1显示了EMC材料的介电常数在高压灭菌器压力前后可能增加2.8%。

表1 EMC的介电性能: 96小时的高压灭菌器测试之后

项目体积电阻率(ohm-cm)介电常数耗散因子(%)
RT150C
T=05.00E+161.00E+103.60.5
PCT96h1.00E+162.00E+103.70.7

EMC 介电常数出现2.8%的变化可能产生1.4fF的电容变化。如此小的电容变化要使用 LCR 仪表测量出来是不可能的,但它足以在9位输出上产生15个计数的偏移变化。高压灭菌器压力产生的寄生电容变化很难控制,因为它是EMC材料特征的一部分。但有几种设计对策可以缓解此问题。一种方法是提高传感器灵敏度,从而只需要较低的调制器增益。我们的观察也支持这种方法,发现用不同的设计(具有2倍灵敏度)在高压灭菌器测试中有更好的表现。另一种方法是采用不同前端/架构设计,将屏蔽节点从中间节点分离出来,这样敏感节点和屏蔽节点之间的寄生电容不会产生偏移。

V. 结论

本文共讨论了MEMS的三种高压灭菌器失效机理。分别说明了每一种失效机理的FA方法(通过建模和测量)和设计改进。排除了封装应力作为高压灭菌器失效的根源。传感单元内的漏电通过调制器扫频测量得到了确认。依据EMC材料的介电性能测量研究了寄生电容。我们认为漏电和寄生电容变化都存在于高压灭菌失效器件中。最后还为所确定的每个根源建议了设计对策。当测试结果一出来,就会按照报告的测试结果进行这些改进。


上一页 1 2 3 下一页

关键词: MEMS 加速计

评论


相关推荐

技术专区

关闭