新闻中心

EEPW首页 > 模拟技术 > 设计应用 > MEMS建模--从设计到制造

MEMS建模--从设计到制造

作者:时间:2013-11-19来源:网络收藏

微电子机械系统 () 将很快成为智能系统设计和构造不可或缺的部分。这些器件缩短了物理世界和电子世界之间的差距,它们用于众多应用,涉及各种细分市场。在众多细分市场中,价格降低、准确度要求提高和快速面市需求将对设计和制造性能提出新的约束条件。企业要获得成功必须找到新的方法来应对这些挑战。

这种产品的日益增加的复杂性需要设计流程允许工程师在构造实际硅片之前模拟整个制造分布、所有环境和操作条件的整个多模系统。这使工程师能够快速、积极地优化设计,以便最大限度地提高系统准确性和可靠性,同时最大限度地减少流程变化和其他无法预见的相互作用而引起的输出损失。

用于协同模拟的精确的统计转换器模型及其相关信号处理和控制安全对于建立面向智能系统的强大设计流程是必需的。转换器模型生成可能是时间密集型任务,特别是对于具有独特几何属性的新型结构或带有很难在分析方程式中发现的二阶影响的运动方程式。模型降阶 (MOR) 领域的进展专门应对这些挑战 [1-2]。

过去,组件的机电行为一直采用传统的有限元素和边界元素方法进行分析。商用三维解算器允许非常准确、非常详细地模拟 转换器的物理行为,因此它们倾向于成为 MEMS 组件设计师选用的工具。然而,这种模拟极其耗时,对于运行耦合场分析方面的功能仍然有限,不轻易允许与接口电子设备协同模拟,因此,它们在实现整个系统的优化和特性化方面几乎不起作用。

常用方法是生成一个MEMS元素库,这些MEMS元素可被组装,构建一个MEMS 器件的示意图 [3]。这些子元素可能源自于理论、试验结果或FEA 模拟。 这种方法对架构分析非常有用,因为它能够让设计师快速发现标称转换器设计中的变化影响,然而它不能始终捕捉相关主体的真正灵活性,特别是当子元素被视为刚性体的时候。这可能导致对结构的刚度估计过高,并有忽视关键固有模式的危险,实际上可能阻碍整个系统的正常运行。

为了对显微结构的固有灵活性精确并捕捉二阶和非线性行为,需要更适当的降阶方法。一种方法是模态叠加,提供转换器的最高效表达。模态叠加采用最低数量的状态变量来捕捉的结构的真实弹性。通过改变模型生成过程中包含的固有模式数量,很容易做到速度和准确度平衡。可以添加附加形状函数(additional shape function),来提高系统模拟的准确度。图1显示了一个示例,说明如何使用模态叠加和附加形状函数来实现转换器上的封装效果的预期准确度 [4]。从实验室测量结果中提取模型和频率要比确定刚度更容易,所以这种模型的硅验证非常直接。这种高度准确的降阶方法应当用于组件和系统的低级检验,且必须结合对制造分布的统计建模。

MEMS建模--从设计到制造

图1: 使用模态叠加和附加形状函数来提高降阶建模的准确度

理想情况是,应当避免‘点’或非扩展建模解决方案,因为它们限制了设计师在系统水平上探索和优化设计空间的能力。模型应将大小信号行为的几何、流程和环境变量参数化。

只有当组件的制造分布被准确表达的时候,转换器模型才真正有用。流程变量,如膜厚度、蚀刻偏差方面的变化,会导致了转换器行为变化,这种变化必须通过信号处理,在系统水平上进行调节。低估这种变化可能导致最终测试时出现输出损失,而高估则可能导致会减少毛利的保守设计。

只要核心建模的基本方程式准确捕捉了物理变量对转换器行为的影响,固体统计建模就可能产生。统计分布很容易从制造目标或采用诸如后向传播变量(IC 行业非常出名)等方法对实际制造数据进行采样 [5]而得到。从铸造过程中实际测量的度量指标中获取统计数据的好处就是能够提供检验设计环境和制造分布一致性的长期方法。图2 显示了特定转换器测试条件下硅数据与统计建模的比较示例。角文件包含特定西格玛水平的统计建模结果。

MEMS建模--从设计到制造

图 2


上一页 1 2 下一页

关键词: MEMS 建模

评论


相关推荐

技术专区

关闭