新闻中心

EEPW首页 > 模拟技术 > 设计应用 > CCD图像传感器的原理及应用--μPD3575D

CCD图像传感器的原理及应用--μPD3575D

作者: 时间:2013-11-27 来源:网络 收藏
TD>10pF 反馈通过电压VR-100200mV 输出上升延迟时间t3-50100ns 输出上升时间t2-50100ns 输出下降时间t1-50100ns 

其中,饱和输出电压Vout为响应曲线失支直线形时的输出信号电压;饱和曝光量SE为输出饱和时的照度(lx)和积累时间的乘积。

输出电压不均匀性PRNU是取全部有效位输出电压的峰、谷之比值。平均暗电流ADS指的是遮光时的平均输出电流。暗信号不均匀性DSNU是遮光时的全部有效像元的输出电压最大或最小值与ADS的差。输出阻抗Zo为从外部看时输出端子的阻抗。响应度R是曝光量除以输出电压的值。值得注意的是:使用其它光源时,器件的响应度会有所变化。

4 驱动时序

CCD的驱动需要四路脉冲,分别为转移栅时钟φIO、复位时钟φRO、采样保持时钟φSHO和传输门时钟φTG,将它们分别输入到CCD芯片的2脚、3脚、4脚和8脚,并在相应的管脚接上相应的电压就可以实现对CCD的驱动。

实现对CCD驱动的关键工作是如何产生以上的四路波形。图3是该四路时序波形图。

图3

四路脉冲的作用描述如下:当传输门时钟φTG脉冲高电平到来时,正遇到φIO电极下形成深势阱,同时φTG的高电平使φIO电极下的深势阱与CMOS电容存储势阱(存储栅)沟通。于是CMS电容中的信号电荷包全部转移到φIO电极下的势阱中。当φTG变低时,φTG低电平形式的浅势阱将存储栅下势阱与φIO电极下的势阱离开,存储栅势阱进入光积分状态,而转移栅则在转移栅时钟φIO脉冲作用下使转移到φIO电极下势阱中的信号电荷逐位转称,并经过输出电路输出。采样保持时钟φSHO的作用是去掉输出信号中的调幅脉冲成分,使输出脉冲的幅度直接反映像敏单元的照度。

从以上描述和对波形的分析可以看出,复位脉冲φRO每触发一次,φIO脉冲翻转一次,并转移一个像元的信号电荷,因此φIO脉冲的周期为φRO的2倍。采样保持时间φSHO的周期和φRO的周期相同,但相位有一定的时间延迟。传输门时钟φTG脉冲控制线阵CCD整行的转移时间间隔,可作为行同步脉冲,其低电平持续的时间为φIO的整数倍,倍数由CCD的像元数决定。图4给出了的脉冲时序关系图,该图中为负极性逻辑,与前边图3的正极性逻辑正好相反,在编程过程中,我们可以先实现正极性逻辑,然后通过反向器将极性反过来。

图4

从波形图可以看出,当转移时钟φIO变化(人“1”变到“0”或从“0”变到“1”)后,经过t1时间(最小值200ns,典型值300ns),采样保持时钟φSHO从高电平变低电平,低电平维持时间为t2(最小值100ns,典型值300ns),当φRO翻转,使之由高电平变为低电平,触发的间隔时间为t3(最小值3ns,典型值100ns)。复位脉冲φRO翻转后维持的时间为t4(最小值30ns,典型值100ns),当它由低电平变回高电平时,触发转移时钟φIO翻转,其触发间隔为t5(最小值0ns,典型值50ns)。这样,一个循环结束,输出一个像元。如此不断循环,直至完全输出所有的像元。

电荷放大器相关文章:电荷放大器原理
电流变送器相关文章:电流变送器原理


评论


相关推荐

技术专区

关闭