linux设备模型之uart驱动架构分析
circ = state->info->xmit;
if (!circ->buf)
return 0;
spin_lock_irqsave(port->lock, flags);
while (1) {
c = CIRC_SPACE_TO_END(circ->head, circ->tail, UART_XMIT_SIZE);
if (count c)
c = count;
if (c = 0)
break;
memcpy(circ->buf + circ->head, buf, c);
circ->head = (circ->head + c) (UART_XMIT_SIZE - 1);
buf += c;
count -= c;
ret += c;
}
spin_unlock_irqrestore(port->lock, flags);
uart_start(tty);
return ret;
}
Uart_start()代码如下:
static void uart_start(struct tty_struct *tty)
{
struct uart_state *state = tty->driver_data;
struct uart_port *port = state->port;
unsigned long flags;
spin_lock_irqsave(port->lock, flags);
__uart_start(tty);
spin_unlock_irqrestore(port->lock, flags);
}
static void __uart_start(struct tty_struct *tty)
{
struct uart_state *state = tty->driver_data;
struct uart_port *port = state->port;
if (!uart_circ_empty(state->info->xmit) state->info->xmit.buf
!tty->stopped !tty->hw_stopped)
port->ops->start_tx(port);
}
显然,对于write操作而言,它就是将数据copy到环形缓存区。然后调用port->ops->start_tx()将数据写到硬件寄存器。
八:Read操作
Uart的read操作同Tty的read操作相同,即都是调用ldsic->read()读取read_buf中的内容。有对这部份内容不太清楚的,参阅《 linux设备模型之tty驱动架构》.
九:小结
本小节是分析serial驱动的基础。在理解了tty驱动架构之后,再来理解uart驱动架构应该不是很难。随着我们在linux设备驱动分析的深入,越来越深刻的体会到,linux的设备驱动架构很多都是相通的。只要深刻理解了一种驱动架构。举一反三。也就很容易分析出其它架构的驱动了。
评论