新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 基于压控振荡器(VCO)的高性能锁相环(PLL)设计

基于压控振荡器(VCO)的高性能锁相环(PLL)设计

作者: 时间:2010-11-01 来源:网络 收藏

运算放大器的选择取决于应用。如果PFD杂散远离环路带宽(例如在小数N分频频率合成器中),则可以选用双极性结型晶体管输入(BJT)运算放大器,如OP184或OP27等。环路滤波器将会很好地衰减BJT的高输入偏置电流所引起的PFD杂散,而且可以充分利用BJT运算放大器的低噪声电压密度特性。

本文引用地址:https://www.eepw.com.cn/article/187746.htm

如果应用要求较小的PFD与环路带宽比(例如在整数N分频频率合成器中),则应折衷考虑噪声与杂散水平;AD820和AD8661可能是较佳选择。

值得注意的是,虽然有源滤波器往往会增加的噪声,但它能够充当缓冲器,在一些特定应用中具有无源滤波器所不及的优势。例如,如果调谐端口的泄漏电流较高,导致PFD杂散较高,则可以使用运算放大器来降低杂散水平。运算放大器的低阻抗输出可轻松弥补调谐端口泄漏电流。

设计示例
考虑这样一个例子,其中LO的规格要求如下:

  • 倍频程调谐范围:1000 MHz至2000 MHz
  • 相位噪声要求:–142 dBc/Hz(1 MHz偏移)
  • 杂散:小于–70 dBc
  • 通道间隔:250 kHz
  • 锁定时间:小于2 ms
  • 单电源:15 V或30 V

为在1-GHz频带上工作,同时满足相位噪声要求,有必要使用高压和有源环路滤波器。相位噪声和杂散特性以及单电源限制,将决定运算放大器的选择。为了达到杂散要求,运算放大器必须具有低输入偏置电流,而为了实现最佳相位噪声,运算放大器必须具有低电压噪声。选择JFET输入运算放大器可以兼顾以上两个要求,例如AD8661,其输入偏置电流为0.3 pA,电压噪声为12 nV/√Hz。该器件还能处理单电源要求。选择RFMD UMS-2000-A16 来满足倍频程范围要求。

开始设计时,最好利用支持有源滤波器拓扑结构的ADIsimTM工具进行仿真。图3所示为两种推荐的滤波器类型;ADIsimPLL还支持其它配置。

PLL选择ADF4150,它具有整数和小数两种工作模式,提供2/4/8/16/32几种输出分频器选项,可覆盖从2 GHz至31.25 MHz的连续频率。ADF4150与图2所示的ADF4350相似,但前者允许选择外部VCO,适合需要满足更严苛相位噪声要求的应用。在仿真过程中,PLL环路滤波器设置为20 kHz,以期减小运算放大器的噪声贡献,同时使PLL锁定时间小于2 ms。

图4所示为采用以下器件的仿真系统与测量系统噪声(dBc)与频率偏移关系曲线:ADF4150 PLL、UMS VCO和基于AD8661的滤波器。两条曲线均显示,由于有源环路滤波器增加的噪声,约20 kHz时出现峰值噪声–90 dBc,不过仍然实现了1 MHz偏移时–142 dBc/Hz的目标。若要降低带内噪声,可以使用OP184或OP27等噪声更低的运算放大器,但杂散会提高;或者将PLL环路带宽降至20 kHz以下。

图4. ADIsimPLL仿真与测量性能对比:AD8661用作PLL有源滤波器中的运算放大器

图5显示,使用OP27时性能约改善6 dB。这种情况下,因为环路带宽相对较窄,所以杂散并未显著增加。进一步降低带宽可以改善100 kHz以下偏移的相位噪声,但PLL锁定时间会延长。所有这些权衡考虑均可以在进入实验室设计之前,利用ADIsimPLL模拟进行测试。

图5. 有源环路滤波器中使用AD8661与使用OP27的PLL测量性能对比

爆炸新闻:高压PLL
以上讨论都围绕利用有源滤波器实现低压PLL器件与高压VCO接口而展开。不过,高压PLL已经出现,因而使用有源滤波器的必要性大大降低。例如ADF4113HV PLL,它集成高压电荷泵,归一化相位本底噪声为–212 dBc/Hz。对于该器件,PLL电荷泵输出可以高达15 V,因此VCO之前可以使用更为简单的无源滤波器。

滤波器相关文章:滤波器原理


滤波器相关文章:滤波器原理


电源滤波器相关文章:电源滤波器原理


分频器相关文章:分频器原理
电荷放大器相关文章:电荷放大器原理
lc振荡电路相关文章:lc振荡电路原理
鉴相器相关文章:鉴相器原理
晶振相关文章:晶振原理
绝对值编码器相关文章:绝对值编码器原理
数字滤波器相关文章:数字滤波器原理
锁相环相关文章:锁相环原理
锁相放大器相关文章:锁相放大器原理


评论


相关推荐

技术专区

关闭