新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 基于压控振荡器(VCO)的高性能锁相环(PLL)设计

基于压控振荡器(VCO)的高性能锁相环(PLL)设计

作者: 时间:2010-11-01 来源:网络 收藏

限制的主要特性有相位噪声、杂散频率和锁定时间。

相位噪声:相当于时域中的抖动,相位噪声是振荡器或噪声在频域中的表现。它是中各器件所贡献噪声的均方根和。基于电荷泵的PLL可以抑制环路滤波器带宽内的噪声。在环路带宽之外,噪声占主导地位。

杂散:杂散频率由电荷泵定期更新调谐电压而引起,并以与载波相差PFD频率的偏移频率出现。在小数N分频PLL中,小数分频器操作也会引起杂散。

锁定时间:从一个频率变为另一个频率或响应瞬时偏移时,PLL的相位或频率返回锁定范围所需的时间。它以频率或相位建立来确定,其作为特性的重要程度视应用而定。

为什么VCO仍然用高压?
VCO是最后几种不为硅集成潮流所动的电子器件之一。仅几年前,手机所用的VCO才完全集成到手机无线电芯片组中。但是,在蜂窝基站、微波点对点系统、军用和航空航天产品以及其它高性能应用中,基于硅的VCO则能力有限,仍然需要采用分立方式来实施VCO。原因如下:

大多数商用分立VCO采用容值可变的变容二极管,作为LC振荡电路的可调谐元件。改变二极管的电压会改变其电容,从而改变振荡电路的谐振频率。

变容二极管的任何电压噪声都会被VCO增益KV(用MHz/V表示)放大,并转换为相位噪声。要使VCO相位噪声保持最小,KV必须尽可能小,但为了实现合理的宽调谐范围,KV必须较大。因此,对于要求低相位噪声和宽调谐范围的应用,VCO制造商通常会设计低增益、输入电压范围较大的振荡器,以满足这些相互矛盾的要求。

窄带VCO的典型电压调谐范围为0.5 V至4.5 V,宽带VCO通常为1 V至14 V,某些情况下可以宽达1 V至28 V。

同轴谐振器振荡器(CRO)是另一种特殊类型VCO,利用极低增益和宽输入调谐电压来实现超低相位噪声,通常用于窄带专用移动无线电和陆地移动无线电应用。

与高压VCO接口
大多数商用PLL频率合成器IC提供电荷泵输出,其上限约为5.5 V;当环路滤波器仅使用无源器件时,VCO要求较高的调谐电压,该输出不足以直接驱动VCO。为了达到较高的调谐电压,必须利用运算放大器电路实施有源环路滤波器拓扑结构。

实现这种结构的最简单方法是在无源环路滤波器之后添加一个增益级。虽然易于设计,但这种方法有几个缺点:反相运算放大器配置具有低输入阻抗,会使无源环路滤波器承受负载,从而改变环路动态特性;同相配置具有足够高的输入阻抗,不会使滤波器承受负载,但有源滤波器增益会放大运算放大器的任何噪声,从而无法受益于前置无源环路滤波器的滤波功能。更好的拓扑结构是将增益级与滤波器集成于单一有源滤波器模块中。建议采用前置滤波,避免来自电荷泵的极短电流脉冲过驱放大器,否则这可能会限制输入电压额定值。

图3显示建议有源滤波器拓扑结构的两个示例,其中前置滤波分别使用反相和同相增益。请注意,这些放大器电路是真时间积分器,可强迫PLL环路在输入端保持零误差。环路之外,所示拓扑结构可能会漂移至供电轨

a. 反相拓扑结构

b. 同相拓扑结构
图3. 采用前置滤波的有源滤波器

反相拓扑结构的优势是可以将电荷泵输出偏置在固定电压,通常为电荷泵电压的一半(VP/2),此时对杂散性能最有利。注意应提供干净的偏置电压,最好是来源于ADP150等专用低噪声线性稳压器,并在尽可能靠近运算放大器输入引脚处充分去耦。分压器网络所用的电阻值应尽可能小,以便降低噪声。使用反相拓扑结构时,必须确保PLL IC允许PFD极性反转;如有必要,应抵消运算放大器的反转,以正确的极性驱动VCO。ADF4xxx系列就具有这种特性。

同相环路滤波器配置不需要专用偏置,因此这种解决方案可能更紧凑。此时,电荷泵电压不是偏置在固定电平,而是在其工作电压范围内变化。因此,采用此类滤波器时,使用具有轨到轨输入的运算放大器更为关键。(下一节将说明输入电压范围要求。)

选择运算放大器
运算放大器的选择对于最大限度地发挥有源滤波器的潜能至关重要。除带宽外,需要考虑的主要性能规格有:

  • 噪声电压密度,用nV/√Hz表示
  • 电流噪声,用pA/√Hz表示
  • 输入偏置电流
  • 共模电压范围

滤波器输出直接影响所产生的频率和相位;因此,运算放大器的噪声电压密度可以显示有源滤波器将增加多少相位噪声。放大器噪声在PLL环路带宽内和带外均会产生影响,在环路滤波器的转折频率处最为显著,具有高噪声电压密度的放大器尤其突出。因此,放大器噪声必须保持较低水平,才能完成放大器和高压VCO的使命,提供较低的相位噪声。10 nV/√Hz以下是一个不错的设计目标。与误差电流脉冲相比,电流噪声一般非常小,因此其影响往往比电压噪声小得多。

相对于PFD输出电流,如果运算放大器具有较为明显的输入偏置电流,则可能会导致PLL输出频谱上出现较大的杂散。为使VCO调谐电压保持恒定且PLL保持锁定,电荷泵必须补偿每个PFD周期中运算放大器输入端所耗用的偏置电流。这就会在PFD频率调制VTUNE电压,并在载波周围引起杂散,其偏移等于PFD频率。输入偏置电流越高,对VTUNE电压的调制越大,杂散幅度越高。

共模电压范围或输入电压范围(IVR)是运算放大器的另一个重要特性,但常被忽视,导致终端设计发生严重问题。IVR决定输入引脚上最大/最小信号与正/负供电轨之间所需的间隙。

对于采用±15 V电源供电的早期运算放大器,典型IVR为±12 V。后来加入了缓慢的横向PNP输入级,使得IVR可以包括负供电轨,从而提供单电源工作能力。虽然任何运算放大器均能采用地和正电源供电,但必须注意输入与供电轨的间距。

例如,颇受欢迎的OP27采用±15 V电源时,IVR为±12.3 V。这意味着,输入电压至少需要与正负供电轨相差±2.7 V。对于单电源供电、宽输入摆幅应用,范围低端的这种限制将使该放大器缺乏吸引力。如果使用双电源设计方案,则运算放大器的选择范围广得多(而且可轻松解决输入偏置问题)。如果必须采用单电源设计,请使用具有轨到轨输入摆幅的运算放大器(但其中许多放大器可能具有较高的噪声电压特性)。因此,为获得最佳效果,运算放大器需要具有低噪声电压密度、低输入偏置电流和轨到轨输入,以便实现低相位噪声、低杂散和单电源供电。表1列出了ADI公司的一些运算放大器及其上述设计标准的相关特性。

表1. 建议在PLL有源环路滤波器中使用的运算放大器

运算放大器电压噪声,
f = 1 kHz (nV/√Hz)
电流噪声,
f = 1 kHz (pA/√Hz)
输入偏置电流(典型值)输入电压范围,与低供电轨的间隙(V)VSUPPLY 最大电源电压,单电源(V)
AD820160.82 pA–0.236
OP1843.90.460 nA036
AD8661120.10.3 pA–0.116
OP2730.410 nA+2.736
AD809928100 nA+1.312

滤波器相关文章:滤波器原理


滤波器相关文章:滤波器原理


电源滤波器相关文章:电源滤波器原理


分频器相关文章:分频器原理
电荷放大器相关文章:电荷放大器原理
lc振荡电路相关文章:lc振荡电路原理
鉴相器相关文章:鉴相器原理
晶振相关文章:晶振原理
绝对值编码器相关文章:绝对值编码器原理
数字滤波器相关文章:数字滤波器原理
锁相环相关文章:锁相环原理
锁相放大器相关文章:锁相放大器原理


评论


相关推荐

技术专区

关闭