IGBT强驱动电路的设计
驱动等效电路如图6所示。其中,Lm为变压器次边的励磁电感;Z1为稳压管(其反向相当于一个二极管,所以图中就用一个二极管来代替);Rg为驱动电阻,Cgs为IGBT的栅极和源极之间电容;R1为线路等效电阻。由等效电路可知:

R1实际值很小,可以忽略。稳压二极管并联在D1,C1两端,它的电压是D1和C1两端电压之和。稳压二极管是随电流大小自动调整的“可变”电阻。通过改变电阻来控制上升沿和下降沿的速率,从而达到控制过冲尖峰的大小。实测Rg与驱动变压器次边反向波形如图7所示。Rg上电压波形即为励磁电感上流过的电流波形。正脉冲下降沿的过冲尖峰由励磁电感造成的:

由式(2)可以看出,在相同电流变化率情况下,励磁电感越小,励磁电感上的电压尖峰也越小,相应的IGBT G-S之间电压尖峰也越小;同时减小励磁电感还可以减小漏感,但是励磁电感减小会造成脉冲平顶的斜率加大,所以要综合考虑各种情况。

3 结语
通过对上面改进电路的详细分析知道,威胁开关管安全的驱动脉冲过冲尖峰主要是由励磁电感决定的,因此尽可能减小励磁电感是减小过冲尖峰的最直接方法,同时还与稳压管的性能有很大关系。脉冲前沿上升率主要由加速电容决定,电容过小,会出现驱动脉冲前沿过缓,过大会有尖峰,所以要取合适的加速电容。电容的大小一般通过多次实验来确定。这个电容大小的选择既要考虑使脉冲上升沿较陡,又不出现尖峰。
此驱动电路已在中频脉冲渗碳电源中应用,配合器件过流过压保护电路,能较好地满足200 A/1 200 VIGBT模块的驱动要求。同时对驱动大功率的MOSFET等场驱动开关管都有很好的借鉴作用。
本文引用地址:https://www.eepw.com.cn/article/180157.htm
评论