大功率汞灯电源测控系统研究
取N=0,M=0,同相放大器变为电压跟随器,同时取Z2=0,

其中VOUT、IOUT分别为测得的汞灯电源输出电压、电流;PLAMP为汞灯实际工作功率。
对比VP和RLAMP可知,它们有相似的公式结构,可用VP表示RLAMP。由于VV和VI从电压电流信号调理电路输出获得电压,对于电流,同前述假定100A转换成2.5 V,即:

其中:KI=1/40。同样对于电压,同前述假定90 V转换成3 V,即:

其中:KV=1/30。
假定对于汞灯功率PLAMP,1 000W转换成1 V,即:

因VV和VI的最大有效值为5 V,根据乘法器使用说明取SF=5。并代入KI、KV和KP的值可得:

这说明1/KZ环节确实是比例衰减环节,可由VP的分压器构成,实际上各比例因子均可能有误差,由KI、KV、KZ和SF求取KP进行计算是必要的:

可见衰减比KZ减小后(也即基于VP的反馈信号增强),同样VP值代表的功率变大了。
关于K的计算,由于实际上线路电阻RLOST非常小不易直接测量,需通过别的方式反映RLOST的大小,可实测电流为IOUT时线路的电压降VLOST的值VLOST=VOUT-VLAMP,则有:


由于负载线路补偿具有正反馈特性,所以宁可欠补偿也不能过补偿以免引起系统振荡或不稳定,也就是说衰减要比K大,但不能小。通过上述示例计算,设计出参数确定的基于硬件乘法器的功率合成及负载线路补偿电路硬件,实际电路设计中由于电路中不可避免存在偏置电压,需在适当位置处分别加上调零电路。
在得到功率合成信号VP以后,类似光强模拟PID控制,构造独立功率模拟PID控制电路实现具有模拟PID功率控制内环的恒功率控制系统。相应的需对图3控制电路作相应的改变,即改成电流/功率/光强(功率PID与光强PID为各自独立的线路,给定可用同一信号)控制模拟隔离驱动电路。
3 结论
该汞灯电源测控系统目前已成功应用到西部之光计划项目“用于平板显示器制造的反射式大面积照明系统研制”上,经过近一年运行结果表明,该系统功能完善、运行稳定、可靠、有效,恒电流控制稳定性达±0.05%,恒功率控制稳定性达±0.5%。该系统的突出特点是:采用模拟PID控制与数字控制相结合的方式实现了恒电流、恒光强、恒功率控制,能使汞灯安全、稳定工作,发挥最佳光电性能;采用模拟闭环控制输出的高压隔离、模拟乘法器计算功率信号并进行负载线路功率损耗补偿的实时功率计算的方法、并使用模拟控制与数字控制相结合的方式有效提高了功率控制的稳定性。本文引用地址:https://www.eepw.com.cn/article/179913.htm
评论