新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 基于卡尔曼滤波的电力系统短期负荷预测

基于卡尔曼滤波的电力系统短期负荷预测

作者: 时间:2011-02-22 来源:网络 收藏



本文引用地址:https://www.eepw.com.cn/article/179691.htm

  图1是该天24小时的卡尔曼滤波预测值与实际值的比较,图2是24点的卡尔曼滤波的预测误差,其平均绝对相对误差为3.43%,图3是用改进的算法计算该天24小时的负荷值与实际值的比较,图4为改进后的算法的24点的相对误差,其平均绝对相对误差为2.94%,由此可见,改进算法是有效的。

4 小结
  本文运用卡尔曼滤波理论建立了短期负荷预测模型,并进行短期负荷预测,通过算例证实了卡尔曼滤波模型预测的可行性。同时针对负荷预测的特点,通过对卡尔曼滤波算法的改进,提高了预测的精度。
  由于卡尔曼滤波器在递推过程中不断用新息对状态估计进行修正,所以卡尔曼滤波是渐进稳定的,当时间序列足够长时,初始状态的状态值、协方差阵对估计的影响都将衰减为零。所以卡尔曼滤波模型能够不断更新状态信息,获得比较准确的估计值。此方法不仅可以用于短期预测,同样可以用于超短期负荷预测。


上一页 1 2 3 下一页

关键词:

评论


相关推荐

技术专区

关闭