IGBT高压变频调速电源
图4两功率单元串联变频器的电气连接
功率单元串联而成,不是用传统的器件串联来实现高压输出,所以不存在器件均压问题。每个功率单元承受全部的输出电流,但仅承受1/5的输出相电压和1/15的输出功率。变频器采用多重化PWM技术,图1变频器由5对(每对含正反相信号)依次相移12°的三角载波对基波电压进行调制。对A相基波调制所得的5个信号,分别控制A1~A55个功率单元,经叠加即可得图3所示具有11级阶梯的相电压波形。它相当于30脉波变频,理论上29次以下的谐波都可以抵消,总的电压和电流失真可分别低至1.2%和0.8%,堪称“完美无谐波”(Harmony)变频器。它的输入功率因数可达0.95以上,不必设置输入滤波器和功率因数补偿装置。该系列变频器同一相的功率单元输出相同的基波电压,串联各单元之间的载波错开一定的相位,每个功率单元的IGBT开关频率若为600Hz,则当每相有5个功率单元串联时,等效的输出相电压开关频率为6kHz。功率单元采用低的开关频率可以降低开关损耗,而高的等效输出开关频率和多电平可大大改善输出波形。波形改善除减小输出谐波外,还可降低噪音、du/dt值和电机的转矩脉动。所以这种变频器用于调速电源对电机无特殊要求,可用于普通的高压电机,且不必降额,对输出电缆长度也没有特殊限制。
电压型功率单元由于有足够的滤波电容,变频器可承受-30%电源电压下降和5个周期电源丧失。这种主电路拓朴结构虽然使器件数量增加,但由于IGBT驱动功率很低(峰值为5W左右,平均不到1W),且不必采用均压电路、吸改电路和输出滤波器,使变频器效率高达96%以上。
由功率单元构成高压变频器的另一种方案是采用高压IGBT器件,以减少串联功率单元。例如,用3.3kVIGBT器件,由两个功率单元串联的PWM电压源变频器,可输出4160V中压;若欲6000V高压输出,则只要用三单元串联。功率单元和器件数量减少,损耗和故障率也减少。图4为由两功率单元串联的变频器电气连接图。由于输出电压电平级数减少,为获得优良性能,这时变频器需带有输出滤波器。
上述变频器的每一功率单元都从一个由微处理器构成的中央控制器接受命令,控制和通讯信号由光导纤维传送,能维持5kV的绝缘并保证良好的抗干扰性和可靠性。另外,由于采用模块化结构,所有功率单元完全相同,可以互换,每个功率单元与装置的联系仅为3个交流输入、2个交流输出及三路通信插头,单元的维修更换十分方便;如采用功率单元旁路技术,可使变频器在功率单元损坏的情况下继续降额运行。
4结语
工业中,中、高压电动机有着大量的应用。要实现变频调速,以前多采用所谓“高低高”方案,即中间仍采用低压变频器,而在它的输入和输出两边分别用降压和升压变压器来适配电压等级。这样可利用价格相对较低、使用已很普遍的低压变频器。但这种方式,中间环节电流大,加上升降压变压器的损耗,系统效率低,体积庞大,可靠性下降。现在,已有了上述两种结构的高压变频器产品,采用直接变频调速,特别是1000kW以上的大功率电动机,无疑是更为合理的选择。而且可以预计,随着技术的进步,在电力传动领域,二十一世纪将是高压变频器大显神威的年代。
评论