flyback的分析和设计

图十二
其中Lm代表着励磁电感,其它部分则是一个理想变压器.对一个设计良好的变压器来说,需要的励磁电流,总是占总电流的很小的一部分.这个简单的变压器模型忽略了诸如漏感,耦合电容,层间电容,电阻等参数.但是,这个模型做为开始的分析让然是一个好的选择.
下面就把这个简单的变压器的模型插入到我们的flyback的电路(图六)当中,并规定电压电流的正方向,如图十三所示.

假定这个flyback电路仍然工作在稳定的CCM状态.
在状态1 mosfet Q开通,二极管D关断,电路如图十四所示.

图十四
应用我们最开始的假设,然后列写状态方程: (21)
(22)
(23)
这个状态持续时间为dTs.Lm中的电流i在Vg的作用下,线性增加,斜率为.能量储存在Lm中.
在状态2 Mosfet Q关断,二极管D开通,电路如图十五所示.

图十五
在最开始的假设情况下,列写状态方程:(24)
(25)
(26)
这个状态持续时间为 ,Lm中的电流i在二次侧折射电压的作用下,开始线性减少,斜率为.能量转移到输出.
在经过一个周期的折腾后,电感Lm电流回到周期开始的点,C上的电压回到周期开始的点.因为,这是一个工作在和谐状态下的电路.所以有: (27)
(28)
输入电流ig的周期平均值为:(29)
解等式 27 和等式 28 得:(30)
(31)
对比等式 30 和等式 8 以及等式 31 和等式 9. 发现没有,是不是buck-boost和flyback的直流增益很像?也说明了,flyback是由buck-boost演变而来的.
下面研究Mosfet和二极管D所承受的电压.
(32)
(33)
用等式(30)来做简化,则有:(34)
(35)
电感纹波电流的算法,在等式 13 中已经给出.
同样假设设计为i的5%.则通过Mosfet的RMS电流油等式 15 给出.通过二极管D的RMS电流为:
(36)
输入的RMS电流等于Mosfet的RMS电流.
照前面的方法计算C的纹波电流的RMS值为:(37)
纹波电压为:(38)
到现在为止,好像CCM-flyback的draft(这里我实在找不到一个合适的词来形容,所以就只好用这个字了.希望都能明白这个字后面的意思)设计呼之欲出了啊.
到这里,如果正好你也看过了 菜鸟课堂1 的话,那恭喜你,你已经是初级的ccm-flyback设计师了.可以开始做自己的flyback了,虽然性能还很差,也许变压器还会饱和,可能还会响,但不管怎样,这是第一个哦.
评论